Oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering.

Journal Article (Journal Article)

A triblock co-polymer of oligo(trimethylene carbonate)-block-poly(ethylene glycol) 20000-block-oligo(trimethylene carbonate) diacrylate (TMC20) was used as a photo-polymerizable precursor for the encapsulation of primary articular chondrocytes. The efficacy of TMC20 as a biodegradable scaffold for cartilage tissue engineering was compared with non-degradable poly(ethylene glycol) 20000 diacrylate (PEG20) hydrogel. Chondrocytes encapsulated in PEG hydrogels containing oligo(trimethylene carbonate) (OTMC) moieties underwent spontaneous aggregation during in vitro culture, which was not observed in the PEG hydrogel counterparts. The aggregation of cells was found to be dependent on the initial cell density, as well as the mesh size of the hydrogels. Similarly, cell aggregation was also found in biodegradable PEG hydrogels containing caprolactone moieties. The aggregation of cells in TMC20 hydrogels resulted in enhanced cartilage matrix production compared with their PEG20 counterparts over 3 weeks of culture. Taken together, these results indicate that PEG hydrogels containing degradable OTMC moieties promote the aggregation and biosynthetic activity of encapsulated chondrocytes, indicating their potential as scaffolds for the repair of cartilage tissue.

Full Text

Duke Authors

Cited Authors

  • Zhang, C; Sangaj, N; Hwang, Y; Phadke, A; Chang, C-W; Varghese, S

Published Date

  • September 2011

Published In

Volume / Issue

  • 7 / 9

Start / End Page

  • 3362 - 3369

PubMed ID

  • 21664305

Electronic International Standard Serial Number (EISSN)

  • 1878-7568

Digital Object Identifier (DOI)

  • 10.1016/j.actbio.2011.05.024


  • eng

Conference Location

  • England