Generalized Optimized Effective Potential for Orbital Functionals and Self-Consistent Calculation of Random Phase Approximations.

Published

Journal Article

A new self-consistent procedure for calculating the total energy with an orbital-dependent density functional approximation (DFA), the generalized optimized effective potential (GOEP), is developed in the present work. The GOEP is a nonlocal Hermitian potential that delivers the sets of occupied and virtual orbitals and minimizes the total energy. The GOEP optimization leads to the same minimum as does the orbital optimization. The GOEP method is promising as an effective optimization approach for orbital-dependent functionals, as demonstrated for the self-consistent calculations of the random phase approximation (RPA) to the correlation functionals in the particle-hole (ph) and particle-particle (pp) channels. The results show that the accuracy in describing the weakly interacting van der Waals systems is significantly improved in the self-consistent calculations. In particular, the important single excitations contribution in non-self-consistent RPA calculations can be captured self-consistently through the GOEP optimization, leading to orbital renormalization, without using the single excitations in the energy functional.

Full Text

Duke Authors

Cited Authors

  • Jin, Y; Zhang, D; Chen, Z; Su, NQ; Yang, W

Published Date

  • October 2017

Published In

Volume / Issue

  • 8 / 19

Start / End Page

  • 4746 - 4751

PubMed ID

  • 28895734

Pubmed Central ID

  • 28895734

Electronic International Standard Serial Number (EISSN)

  • 1948-7185

International Standard Serial Number (ISSN)

  • 1948-7185

Digital Object Identifier (DOI)

  • 10.1021/acs.jpclett.7b02165

Language

  • eng