Model-based variance-stabilizing transformation for Illumina microarray data.

Journal Article (Journal Article)

Variance stabilization is a step in the preprocessing of microarray data that can greatly benefit the performance of subsequent statistical modeling and inference. Due to the often limited number of technical replicates for Affymetrix and cDNA arrays, achieving variance stabilization can be difficult. Although the Illumina microarray platform provides a larger number of technical replicates on each array (usually over 30 randomly distributed beads per probe), these replicates have not been leveraged in the current log2 data transformation process. We devised a variance-stabilizing transformation (VST) method that takes advantage of the technical replicates available on an Illumina microarray. We have compared VST with log2 and Variance-stabilizing normalization (VSN) by using the Kruglyak bead-level data (2006) and Barnes titration data (2005). The results of the Kruglyak data suggest that VST stabilizes variances of bead-replicates within an array. The results of the Barnes data show that VST can improve the detection of differentially expressed genes and reduce false-positive identifications. We conclude that although both VST and VSN are built upon the same model of measurement noise, VST stabilizes the variance better and more efficiently for the Illumina platform by leveraging the availability of a larger number of within-array replicates. The algorithms and Supplementary Data are included in the lumi package of Bioconductor, available at:

Full Text

Duke Authors

Cited Authors

  • Lin, SM; Du, P; Huber, W; Kibbe, WA

Published Date

  • February 2008

Published In

Volume / Issue

  • 36 / 2

Start / End Page

  • e11 -

PubMed ID

  • 18178591

Pubmed Central ID

  • PMC2241869

Electronic International Standard Serial Number (EISSN)

  • 1362-4962

Digital Object Identifier (DOI)

  • 10.1093/nar/gkm1075


  • eng

Conference Location

  • England