Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis.

Published

Journal Article

High-throughput profiling of DNA methylation status of CpG islands is crucial to understand the epigenetic regulation of genes. The microarray-based Infinium methylation assay by Illumina is one platform for low-cost high-throughput methylation profiling. Both Beta-value and M-value statistics have been used as metrics to measure methylation levels. However, there are no detailed studies of their relations and their strengths and limitations.We demonstrate that the relationship between the Beta-value and M-value methods is a Logit transformation, and show that the Beta-value method has severe heteroscedasticity for highly methylated or unmethylated CpG sites. In order to evaluate the performance of the Beta-value and M-value methods for identifying differentially methylated CpG sites, we designed a methylation titration experiment. The evaluation results show that the M-value method provides much better performance in terms of Detection Rate (DR) and True Positive Rate (TPR) for both highly methylated and unmethylated CpG sites. Imposing a minimum threshold of difference can improve the performance of the M-value method but not the Beta-value method. We also provide guidance for how to select the threshold of methylation differences.The Beta-value has a more intuitive biological interpretation, but the M-value is more statistically valid for the differential analysis of methylation levels. Therefore, we recommend using the M-value method for conducting differential methylation analysis and including the Beta-value statistics when reporting the results to investigators.

Full Text

Duke Authors

Cited Authors

  • Du, P; Zhang, X; Huang, C-C; Jafari, N; Kibbe, WA; Hou, L; Lin, SM

Published Date

  • November 30, 2010

Published In

Volume / Issue

  • 11 /

Start / End Page

  • 587 -

PubMed ID

  • 21118553

Pubmed Central ID

  • 21118553

Electronic International Standard Serial Number (EISSN)

  • 1471-2105

International Standard Serial Number (ISSN)

  • 1471-2105

Digital Object Identifier (DOI)

  • 10.1186/1471-2105-11-587

Language

  • eng