Turbulence: the filtering approach

Published

Journal Article

Explicit or implicit filtered representations of chaotic fields like spectral cut-offs or numerical discretizations are commonly used in the study of turbulence and particularly in the so-called large-eddy simulations. Peculiar to these representations is that they are produced by different filtering operators at different levels of resolution, and they can be hierarchically organized in terms of a characteristic parameter like a grid length or a spectral truncation mode. Unfortunately, in the case of a general implicit or explicit filtering operator the Reynolds rules of the mean are no longer valid, and the classical analysis of the turbulence in terms of mean values and fluctuations is not so simple.In this paper a new operatorial approach to the study of turbulence based on the general algebraic properties of the filtered representations of a turbulence field at different levels is presented. The main results of this analysis are the averaging invariance of the filtered Navier—Stokes equations in terms of the generalized central moments, and an algebraic identity that relates the turbulent stresses at different levels. The statistical approach uses the idea of a decomposition in mean values and fluctuations, and the original turbulent field is seen as the sum of different contributions. On the other hand this operatorial approach is based on the comparison of different representations of the turbulent field at different levels, and, in the opinion of the author, it is particularly fitted to study the similarity between the turbulence at different filtering levels. The best field of application of this approach is the numerical large-eddy simulation of turbulent flows where the large scale of the turbulent field is captured and the residual small scale is modelled. It is natural to define and to extract from the resolved field the resolved turbulence and to use the information that it contains to adapt the subgrid model to the real turbulent field. Following these ideas the application of this approach to the large-eddy simulation of the turbulent flow has been produced (Germano et al. 1991). It consists in a dynamic subgrid-scale eddy viscosity model that samples the resolved scale and uses this information to adjust locally the Smagorinsky constant to the local turbulence.

Full Text

Duke Authors

Cited Authors

  • Germano, M

Published Date

  • May 1992

Published In

Volume / Issue

  • 238 /

Start / End Page

  • 325 - 336

Published By

Electronic International Standard Serial Number (EISSN)

  • 1469-7645

International Standard Serial Number (ISSN)

  • 0022-1120

Digital Object Identifier (DOI)

  • 10.1017/s0022112092001733

Language

  • en