Bimodal decompression sickness onset times are not related to dive type or event severity.

Journal Article (Journal Article)

Human decompression sickness (DCS) is a condition associated with depressurization during underwater diving. Human research dive trial data containing dive outcome (DCS, no-DCS) and symptom information are used to calibrate probabilistic DCS models. DCS symptom onset time information is visualized using occurrence density functions (ODF) which plot the DCS onset rate per unit time. For the BIG292 human dive trial data set, a primary U.S. Navy model calibration set, the ODFs are bimodal, however probabilistic models do not produce bimodal ODFs. We investigate the source of bimodality by partitioning the BIG292 data based on dive type, DCS event severity, DCS symptom type, institution, and chronology of dive trial. All but one variant of data partitioning resulted in a bimodal or ambiguously shaped ODF, indicating that ODF bimodality is not related to the dive type or the DCS event severity. Rather, we find that the dive trial medical surveillance protocol used to determine DCS symptom onset time may have biased the reported event window. Thus, attempts to develop probabilistic DCS models that reproduce BIG292 bimodality are unlikely to result in an improvement in model performance for data outside of the calibration set.

Full Text

Duke Authors

Cited Authors

  • King, AE; Murphy, FG; Howle, LE

Published Date

  • December 2017

Published In

Volume / Issue

  • 91 /

Start / End Page

  • 59 - 68

PubMed ID

  • 29040885

Electronic International Standard Serial Number (EISSN)

  • 1879-0534

International Standard Serial Number (ISSN)

  • 0010-4825

Digital Object Identifier (DOI)

  • 10.1016/j.compbiomed.2017.10.010


  • eng