Skip to main content
Journal cover image

Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency.

Publication ,  Journal Article
Guerriero, RM; Patel, AA; Walsh, B; Baumer, FM; Shah, AS; Peters, JM; Rodan, LH; Agrawal, PB; Pearl, PL; Takeoka, M
Published in: Pediatr Neurol
November 2017

OBJECTIVE: Pyridoxine is converted to its biologically active form pyridoxal-5-phosphate (P5P) by the enzyme pyridox(am)ine 5'-phosphate oxidase and serves as a cofactor in nearly 200 reactions in the central nervous system. Pyridox(am)ine 5'-phosphate oxidase deficiency leads to P5P dependent epilepsy, typically a neonatal- or infantile-onset epileptic encephalopathy treatable with P5P or in some cases, pyridoxine. Following identification of retinopathy in a patient with pyridox(am)ine 5'-phosphate oxidase deficiency that was reversible with P5P therapy, we describe the systemic manifestations of pyridox(am)ine 5'-phosphate oxidase deficiency. METHODS: A series of six patients with homozygous mutations of PNPO, the gene coding pyridox(am)ine 5'-phosphate oxidase, were evaluated in our center over the course of two years for phenotyping of neurological and systemic manifestations. RESULTS: Five of six were born prematurely, three had anemia and failure to thrive, and two had elevated alkaline phosphatase. A movement disorder was observed in two children, and a reversible retinopathy was observed in the most severely affected infant. All patients had neonatal-onset epilepsy and were on a continuum of developmental delay to profound encephalopathy. Electroencephalographic features included background slowing and disorganization, absent sleep features, and multifocal and generalized epileptiform discharges. All the affected probands carried a homozygous PNPO mutation (c.674 G>T, c.686 G>A and c.352G>A). CONCLUSION: In addition to the well-described epileptic encephalopathy, pyridox(am)ine 5'-phosphate oxidase deficiency causes a range of neurological and systemic manifestations. A movement disorder, developmental delay, and encephalopathy, as well as retinopathy, anemia, and failure to thrive add to the broadening clinical spectrum of P5P dependent epilepsy.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Pediatr Neurol

DOI

EISSN

1873-5150

Publication Date

November 2017

Volume

76

Start / End Page

47 / 53

Location

United States

Related Subject Headings

  • Seizures
  • Retina
  • Pyridoxaminephosphate Oxidase
  • Pyridoxal Phosphate
  • Neurology & Neurosurgery
  • Mutation
  • Male
  • Magnetic Resonance Imaging
  • Infant, Newborn
  • Hypoxia-Ischemia, Brain
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Guerriero, R. M., Patel, A. A., Walsh, B., Baumer, F. M., Shah, A. S., Peters, J. M., … Takeoka, M. (2017). Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency. Pediatr Neurol, 76, 47–53. https://doi.org/10.1016/j.pediatrneurol.2017.05.024
Guerriero, Réjean M., Archana A. Patel, Brian Walsh, Fiona M. Baumer, Ankoor S. Shah, Jurriaan M. Peters, Lance H. Rodan, Pankaj B. Agrawal, Phillip L. Pearl, and Masanori Takeoka. “Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency.Pediatr Neurol 76 (November 2017): 47–53. https://doi.org/10.1016/j.pediatrneurol.2017.05.024.
Guerriero RM, Patel AA, Walsh B, Baumer FM, Shah AS, Peters JM, et al. Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency. Pediatr Neurol. 2017 Nov;76:47–53.
Guerriero, Réjean M., et al. “Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency.Pediatr Neurol, vol. 76, Nov. 2017, pp. 47–53. Pubmed, doi:10.1016/j.pediatrneurol.2017.05.024.
Guerriero RM, Patel AA, Walsh B, Baumer FM, Shah AS, Peters JM, Rodan LH, Agrawal PB, Pearl PL, Takeoka M. Systemic Manifestations in Pyridox(am)ine 5'-Phosphate Oxidase Deficiency. Pediatr Neurol. 2017 Nov;76:47–53.
Journal cover image

Published In

Pediatr Neurol

DOI

EISSN

1873-5150

Publication Date

November 2017

Volume

76

Start / End Page

47 / 53

Location

United States

Related Subject Headings

  • Seizures
  • Retina
  • Pyridoxaminephosphate Oxidase
  • Pyridoxal Phosphate
  • Neurology & Neurosurgery
  • Mutation
  • Male
  • Magnetic Resonance Imaging
  • Infant, Newborn
  • Hypoxia-Ischemia, Brain