Degradation of hydrogen peroxide at the ocean's surface: the influence of the microbial community on the realized thermal niche of Prochlorococcus.

Published

Journal Article

Prochlorococcus, the smallest and most abundant phytoplankter in the ocean, is highly sensitive to hydrogen peroxide (HOOH), and co-occurring heterotrophs such as Alteromonas facilitate the growth of Prochlorococcus by scavenging HOOH. Temperature is also a major influence on Prochlorococcus abundance and distribution in the ocean, and studies in other photosynthetic organisms have shown that HOOH and temperature extremes can act together as synergistic stressors. To address potential synergistic effects of temperature and HOOH on Prochlorococcus growth, high- and low-temperature-adapted representative strains were cultured at ecologically relevant concentrations under a range of HOOH concentrations and temperatures. Higher concentrations of HOOH severely diminished the permissive temperature range for growth of both Prochlorococcus strains. At the permissive temperatures, the growth rates of both Prochlorococcus strains decreased as a function of HOOH, and cold temperature increased susceptibility of photosystem II to HOOH-mediated damage. Serving as a proxy for the natural community, co-cultured heterotrophic bacteria increased the Prochlorococcus growth rate under these temperatures, and expanded the permissive range of temperature for growth. These studies indicate that in the ocean, the cross-protective function of the microbial community may confer a fitness increase for Prochlorococcus at its temperature extremes, especially near the ocean surface where oxidative stress is highest. This interaction may play a substantial role in defining the realized thermal niche and habitat range of Prochlorococcus with respect to latitude.The ISME Journal advance online publication, 31 October 2017; doi:10.1038/ismej.2017.182.

Full Text

Duke Authors

Cited Authors

  • Ma, L; Calfee, BC; Morris, JJ; Johnson, ZI; Zinser, ER

Published Date

  • October 31, 2017

Published In

PubMed ID

  • 29087377

Pubmed Central ID

  • 29087377

Electronic International Standard Serial Number (EISSN)

  • 1751-7370

International Standard Serial Number (ISSN)

  • 1751-7362

Digital Object Identifier (DOI)

  • 10.1038/ismej.2017.182

Language

  • eng