Constraints on rapidity-dependent initial conditions from charged-particle pseudorapidity densities and two-particle correlations


Journal Article

© 2017 American Physical Society. We study the initial three-dimensional spatial configuration of the quark-gluon plasma (QGP) produced in relativistic heavy-ion collisions using centrality and pseudorapidity-dependent measurements of the medium's charged particle density and two-particle correlations. A cumulant-generating function is first used to parametrize the rapidity dependence of local entropy deposition and extend arbitrary boost-invariant initial conditions to nonzero beam rapidities. The model is then compared to p+Pb and Pb + Pb charged-particle pseudorapidity densities and two-particle pseudorapidity correlations and systematically optimized using Bayesian parameter estimation to extract high-probability initial condition parameters. The optimized initial conditions are then compared to a number of experimental observables including the pseudorapidity-dependent anisotropic flows, event-plane decorrelations, and flow correlations. We find that the form of the initial local longitudinal entropy profile is well constrained by these experimental measurements.

Full Text

Duke Authors

Cited Authors

  • Ke, W; Moreland, JS; Bernhard, JE; Bass, SA

Published Date

  • October 25, 2017

Published In

Volume / Issue

  • 96 / 4

Electronic International Standard Serial Number (EISSN)

  • 2469-9993

International Standard Serial Number (ISSN)

  • 2469-9985

Digital Object Identifier (DOI)

  • 10.1103/PhysRevC.96.044912

Citation Source

  • Scopus