Bioavailability and catalytic properties of copper and iron for Fenton chemistry in human cerebrospinal fluid.

Published

Journal Article

A breakdown in homeostasis of redox-active metals represents an important factor for neurodegeneration. We have used EPR spectroscopy and BMPO spin-trap to investigate the catalytic properties and ligand modulation of redox activity of copper and iron in human cerebrospinal fluid (CSF). In contrast to iron, copper supplementation provoked a statistically significant increase in hydroxyl free radical generation in CSF treated with H(2)O(2). However, in a binary copper/iron containing Fenton system, iron catalytically activated copper. The chelator EDTA, which represents a model of physiological metal ligands, completely prevented copper's redox activity in CSF, while iron chelation led to a significant increase in hydroxyl radical generation, indicating that copper and iron do not only have diverse catalytic properties in the CSF but also that their redox activities are differently modulated by ligands. The application of DDC reduced hydroxyl radical generation in the CSF containing catalytically active metals (free Cu(2+) or Fe(3+)-EDTA complex). We conclude that chelators, such as DDC, are capable of preventing the prooxidative activity of both metals and may be suitable for reducing hydroxyl radical formation in certain pathophysiological settings.

Full Text

Duke Authors

Cited Authors

  • Spasojević, I; Mojović, M; Stević, Z; Spasić, SD; Jones, DR; Morina, A; Spasić, MB

Published Date

  • 2010

Published In

Volume / Issue

  • 15 / 1

Start / End Page

  • 29 - 35

PubMed ID

  • 20196926

Pubmed Central ID

  • 20196926

Electronic International Standard Serial Number (EISSN)

  • 1743-2928

Digital Object Identifier (DOI)

  • 10.1179/174329210X12650506623087

Language

  • eng

Conference Location

  • England