Skip to main content
Journal cover image

Pedicle Screw With Increased Cortical Purchase Can Be Inserted With Same Accuracy as the Screw in Straightforward Trajectory Using 3D Modeling Landmarks.

Publication ,  Journal Article
Szczodry, M; Solitro, GF; Amirouche, F; Patel, P
Published in: Spine deformity
January 2018

Comparison, in terms of insertion accuracy and biomechanical performance, between an increased cortical purchase and straightforward pedicle screw trajectory.This study aims to compare a trajectory with increased cortical purchase to the more common straightforward trajectory in terms of strength and insertion accuracy using real-time navigation.In previous studies, it was suggested that pedicle screw pullout strength is strongly correlated with bone mineral density, and using a more cortical tract allows a greater portion of the denser bone, the cortex, to be in contact with the screw. In light of this advantage, an insertion technique has been proposed more recently, to increase the cortical purchase to maximize screw thread contact with cortical bone. It is performed inserting the screw with reduced transverse inclination and results in cortical bone purchase in the lateral portion of the pedicle.Eight T1 and eight T3 vertebra models were reconstructed in Mimics Suite (Materialise, Leuven, Belgium) using CT data obtained with a Medtronic O-arm. Using a previously developed computer algorithm, we calculated all achievable safe trajectories for pedicle screw placement ensuring a minimal distance of 0.5 mm between screw and pedicle edges. For both vertebrae, among these, the straightest and the most convergent trajectories with the calculated insertion region greater than 15% of the total were selected to safely instrument the vertebrae, respectively, as ICP and straightforward techniques. The straightforward technique was planned with a transverse angle of 22.50° in both vertebrae whereas the ICP was planned with a transverse angle of 12.50° for T1 and 2.5° for T3. The screws were implanted by a surgeon experienced in straightforward insertion, and other independent investigators measured placement accuracy and mechanical performance.The transverse screw angles for T1 and T3 with straightforward technique had average values of 24.93° ± 2.96° and 23.53° ± 2.70°, respectively. For the ICP technique, the average values were 15.60° ± 2.95° for T1 and 2.29° ± 1.55° for T3. The resultant errors associated with screw placement for T1 and T3 were not significantly different (p > .05). The pullout failure loads with straightforward techniques ranged from 756 ± 164 N in T1 to 703 ± 74 N in T3 and were not significantly different (p > .05) from the values of 699 ± 84 N for T1 and of 732 ± 113 N measured for the ICP.For the upper thoracic vertebrae tested, despite the use of shorter screws, the insertion technique with increased cortical purchase, in biomechanical terms, is comparable with the straightforward trajectory. Using guidance, the proposed ICP technique was performed with the same accuracy as the popular straightforward technique.Level V.

Published In

Spine deformity

DOI

EISSN

2212-1358

ISSN

2212-134X

Publication Date

January 2018

Volume

6

Issue

1

Start / End Page

20 / 27

Related Subject Headings

  • Tomography, X-Ray Computed
  • Thoracic Vertebrae
  • Surgery, Computer-Assisted
  • Spinal Fusion
  • Pedicle Screws
  • Models, Anatomic
  • Imaging, Three-Dimensional
  • Humans
  • Cortical Bone
  • Bone Density
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Szczodry, M., Solitro, G. F., Amirouche, F., & Patel, P. (2018). Pedicle Screw With Increased Cortical Purchase Can Be Inserted With Same Accuracy as the Screw in Straightforward Trajectory Using 3D Modeling Landmarks. Spine Deformity, 6(1), 20–27. https://doi.org/10.1016/j.jspd.2017.06.004
Szczodry, Michal, Giovanni F. Solitro, Farid Amirouche, and Priyesh Patel. “Pedicle Screw With Increased Cortical Purchase Can Be Inserted With Same Accuracy as the Screw in Straightforward Trajectory Using 3D Modeling Landmarks.Spine Deformity 6, no. 1 (January 2018): 20–27. https://doi.org/10.1016/j.jspd.2017.06.004.
Szczodry, Michal, et al. “Pedicle Screw With Increased Cortical Purchase Can Be Inserted With Same Accuracy as the Screw in Straightforward Trajectory Using 3D Modeling Landmarks.Spine Deformity, vol. 6, no. 1, Jan. 2018, pp. 20–27. Epmc, doi:10.1016/j.jspd.2017.06.004.
Journal cover image

Published In

Spine deformity

DOI

EISSN

2212-1358

ISSN

2212-134X

Publication Date

January 2018

Volume

6

Issue

1

Start / End Page

20 / 27

Related Subject Headings

  • Tomography, X-Ray Computed
  • Thoracic Vertebrae
  • Surgery, Computer-Assisted
  • Spinal Fusion
  • Pedicle Screws
  • Models, Anatomic
  • Imaging, Three-Dimensional
  • Humans
  • Cortical Bone
  • Bone Density