The implication of AMPA receptor in synaptic plasticity impairment and intellectual disability in fragile X syndrome.

Journal Article (Journal Article;Review)

Fragile X syndrome (FXS) is the most frequently inherited form of intellectual disability and prevalent single-gene cause of autism. A priority of FXS research is to determine the molecular mechanisms underlying the cognitive and social functioning impairments in humans and the FXS mouse model. Glutamate ionotropic alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors (AMPARs) mediate a majority of fast excitatory neurotransmission in the central nervous system and are critically important for nearly all aspects of brain function, including neuronal development, synaptic plasticity, and learning and memory. Both preclinical and clinical studies have indicated that expression, trafficking, and functions of AMPARs are altered and result in altered synapse development and plasticity, cognitive impairment, and poor mental health in FXS. In this review, we discuss the contribution of AMPARs to disorders of FXS by highlighting recent research advances with a specific focus on change in AMPARs expression, trafficking, and dependent synaptic plasticity. Since changes in synaptic strength underlie the basis of learning, development, and disease, we suggest that the current knowledge base of AMPARs has reached a unique point to permit a comprehensive re-evaluation of their roles in FXS.

Full Text

Duke Authors

Cited Authors

  • Cheng, G-R; Li, X-Y; Xiang, Y-D; Liu, D; McClintock, SM; Zeng, Y

Published Date

  • November 24, 2017

Published In

Volume / Issue

  • 66 / 5

Start / End Page

  • 715 - 727

PubMed ID

  • 28730825

Electronic International Standard Serial Number (EISSN)

  • 1802-9973

Digital Object Identifier (DOI)

  • 10.33549/physiolres.933473


  • eng

Conference Location

  • Czech Republic