How sticky should a virus be? The impact of virus binding and release on transmission fitness using influenza as an example.

Published

Journal Article

Budding viruses face a trade-off: virions need to efficiently attach to and enter uninfected cells while newly generated virions need to efficiently detach from infected cells. The right balance between attachment and detachment-the right amount of stickiness-is needed for maximum fitness. Here, we design and analyse a mathematical model to study in detail the impact of attachment and detachment rates on virus fitness. We apply our model to influenza, where stickiness is determined by a balance of the haemagglutinin (HA) and neuraminidase (NA) proteins. We investigate how drugs, the adaptive immune response and vaccines impact influenza stickiness and fitness. Our model suggests that the location in the 'stickiness landscape' of the virus determines how well interventions such as drugs or vaccines are expected to work. We discuss why hypothetical NA enhancer drugs might occasionally perform better than the currently available NA inhibitors in reducing virus fitness. We show that an increased antibody or T-cell-mediated immune response leads to maximum fitness at higher stickiness. We further show that antibody-based vaccines targeting mainly HA or NA, which leads to a shift in stickiness, might reduce virus fitness above what can be achieved by the direct immunological action of the vaccine. Overall, our findings provide potentially useful conceptual insights for future vaccine and drug development and can be applied to other budding viruses beyond influenza.

Full Text

Duke Authors

Cited Authors

  • Handel, A; Akin, V; Pilyugin, SS; Zarnitsyna, V; Antia, R

Published Date

  • March 2014

Published In

Volume / Issue

  • 11 / 92

Start / End Page

  • 20131083 -

PubMed ID

  • 24430126

Pubmed Central ID

  • 24430126

Electronic International Standard Serial Number (EISSN)

  • 1742-5662

International Standard Serial Number (ISSN)

  • 1742-5689

Digital Object Identifier (DOI)

  • 10.1098/rsif.2013.1083

Language

  • eng