Machine learning for the New York City power grid

Journal Article (Journal Article)

Power companies can benefit from the use of knowledge discovery methods and statistical machine learning for preventive maintenance. We introduce a general process for transforming historical electrical grid data into models that aim to predict the risk of failures for components and systems. These models can be used directly by power companies to assist with prioritization of maintenance and repair work. Specialized versions of this process are used to produce 1) feeder failure rankings, 2) cable, joint, terminator, and transformer rankings, 3) feeder Mean Time Between Failure (MTBF) estimates, and 4) manhole events vulnerability rankings. The process in its most general form can handle diverse, noisy, sources that are historical (static), semi-real-time, or real-time, incorporates state-of-the-art machine learning algorithms for prioritization (supervised ranking or MTBF), and includes an evaluation of results via cross-validation and blind test. Above and beyond the ranked lists and MTBF estimates are business management interfaces that allow the prediction capability to be integrated directly into corporate planning and decision support; such interfaces rely on several important properties of our general modeling approach: that machine learning features are meaningful to domain experts, that the processing of data is transparent, and that prediction results are accurate enough to support sound decision making. We discuss the challenges in working with historical electrical grid data that were not designed for predictive purposes. The rawness of these data contrasts with the accuracy of the statistical models that can be obtained from the process; these models are sufficiently accurate to assist in maintaining New York City's electrical grid. © 2011 IEEE.

Full Text

Duke Authors

Cited Authors

  • Rudin, C; Waltz, D; Anderson, R; Boulanger, A; Salleb-Aouissi, A; Chow, M; Dutta, H; Gross, P; Huang, B; Ierome, S; Isaac, DF; Kressner, A; Passonneau, RJ; Radeva, A; Wu, L

Published Date

  • January 1, 2012

Published In

Volume / Issue

  • 34 / 2

Start / End Page

  • 328 - 345

International Standard Serial Number (ISSN)

  • 0162-8828

Digital Object Identifier (DOI)

  • 10.1109/TPAMI.2011.108

Citation Source

  • Scopus