Forced underwater laminar flows with active magnetohydrodynamic metamaterials

Published

Journal Article

© 2017 American Physical Society. Theory and practical implementations for wake-free propulsion systems are proposed and proven with computational fluid dynamic modeling. Introduced earlier, the concept of active hydrodynamic metamaterials is advanced by introducing magnetohydrodynamic metamaterials, structures with custom-designed volumetric distribution of Lorentz forces acting on a conducting fluid. Distributions of volume forces leading to wake-free, laminar flows are designed using multivariate optimization. Theoretical indications are presented that such flows can be sustained at arbitrarily high Reynolds numbers. Moreover, it is shown that in the limit Re 102, a fixed volume force distribution may lead to a forced laminar flow across a wide range of Re numbers, without the need to reconfigure the force-generating metamaterial. Power requirements for such a device are studied as a function of the fluid conductivity. Implications to the design of distributed propulsion systems underwater and in space are discussed.

Full Text

Cited Authors

  • Culver, D; Urzhumov, Y

Published Date

  • December 7, 2017

Published In

Volume / Issue

  • 96 / 6

Electronic International Standard Serial Number (EISSN)

  • 2470-0053

International Standard Serial Number (ISSN)

  • 2470-0045

Digital Object Identifier (DOI)

  • 10.1103/PhysRevE.96.063107

Citation Source

  • Scopus