Thermoelectric energy harvesting for a solid waste processing toilet
Published
Conference Paper
Over 2.5 billion people do not have access to safe and effective sanitation. Without a sanitary sewer infrastructure, self-contained modular systems can provide solutions for these people in the developing world and remote areas. Our team is building a better toilet that processes human waste into burnable fuel and disinfects the liquid waste. The toilet employs energy harvesting to produce electricity and does not require external electrical power or consumable materials. RTI has partnered with Colorado State University, Duke University, and Roca Sanitario under a Bill and Melinda Gates Foundation Reinvent the Toilet Challenge (RTTC) grant to develop an advanced stand-alone, self-sufficient toilet to effectively process solid and liquid waste. The system operates through the following steps: 1) Solid-liquid separation, 2) Solid waste drying and sizing, 3) Solid waste combustion, and 4) Liquid waste disinfection. Thermoelectric energy harvesting is a key component to the system and provides the electric power for autonomous operation. A portion of the exhaust heat is captured through finned heat-sinks and converted to electricity by thermoelectric (TE) devices to provide power for the electrochemical treatment of the liquid waste, pumps, blowers, combustion ignition, and controls. © 2014 SPIE.
Full Text
Duke Authors
Cited Authors
- Stokes, CD; Baldasaro, NG; Bulman, GE; Stoner, BR
Published Date
- January 1, 2014
Published In
Volume / Issue
- 9115 /
Electronic International Standard Serial Number (EISSN)
- 1996-756X
International Standard Serial Number (ISSN)
- 0277-786X
International Standard Book Number 13 (ISBN-13)
- 9781628410525
Digital Object Identifier (DOI)
- 10.1117/12.2073696
Citation Source
- Scopus