Systematic design of broadband path-coiling acoustic metamaterials

Published

Journal Article

© 2018 Author(s). A design approach for acoustic metamaterial unit cells based on a coiled path with impedance matching layers (IMLs) is proposed in this paper. A theoretical approach is developed to calculate the transmission of the labyrinthine unit cells with different effective refractive indices. The IML is introduced to broaden the transmission bandwidth and produce a lower envelope boundary of transmission for unit cells of different effective refractive indices. According to the theory, cells of all effective refractive indices can be built to achieve unitary transmission at center working frequencies. The working frequency can be tuned by adjusting the length of the IML. Numerical simulations based on finite element analysis are used to validate the theoretical predictions. The high transmission and low dispersive index nature of our designs are further verified by experiments within a broad frequency band of over 1.4 kHz centered at 2.86 kHz. Our design approach can be useful in various wavefront engineering applications.

Full Text

Duke Authors

Cited Authors

  • Jia, Z; Li, J; Shen, C; Xie, Y; Cummer, SA

Published Date

  • January 14, 2018

Published In

Volume / Issue

  • 123 / 2

Electronic International Standard Serial Number (EISSN)

  • 1089-7550

International Standard Serial Number (ISSN)

  • 0021-8979

Digital Object Identifier (DOI)

  • 10.1063/1.5009488

Citation Source

  • Scopus