DNA delivery from hyaluronic acid-collagen hydrogels via a substrate-mediated approach.

Published

Journal Article

Efficient and controlled gene delivery from biodegradable materials can be employed to stimulate cellular processes that lead to tissue regeneration. In this report, a substrate-mediated approach was developed to deliver DNA from hyaluronic acid-collagen hydrogels. The hydrogels were formed by crosslinking HA with poly(ethylene glycol) diglycidyl ether. Poly(ethylene imine)(PEI)/DNA complexes were immobilized to the substrate using either biotin/neutravidin or non-specific adsorption. Complexes were formed in the presence or absence of salt to regulate complex size, and resulted in complexes with z-average diameters of 1221.7 +/- 152.3 and 139.4 +/- 1.3 nm, respectively. During 48-h incubation in PBS or hyaluronidase, DNA was released slowly from the hydrogel substrate (<30% of immobilized DNA), which was enhanced by incubation with conditioned media (approximately 50% of immobilized DNA). Transgene expression mediated by immobilized, large diameter complexes was 3 to 7-fold greater than for small diameter complexes. However, the percentage of cells expressing the transgene was greater for small diameter complexes (48.7%) than for large diameter complexes (22.3%). Spatially controlled gene transfer was achieved by topographically patterning the hydrogel to pattern cell adhesion. Biomaterial-based gene delivery can be applicable to numerous tissue engineering applications, or as a tool to examine tissue formation.

Full Text

Duke Authors

Cited Authors

  • Segura, T; Chung, PH; Shea, LD

Published Date

  • May 2005

Published In

Volume / Issue

  • 26 / 13

Start / End Page

  • 1575 - 1584

PubMed ID

  • 15522759

Pubmed Central ID

  • 15522759

Electronic International Standard Serial Number (EISSN)

  • 1878-5905

International Standard Serial Number (ISSN)

  • 0142-9612

Digital Object Identifier (DOI)

  • 10.1016/j.biomaterials.2004.05.007

Language

  • eng