Training software using virtual-reality technology and pre-calculated effective dose data.

Published

Journal Article

This paper describes the development of a software package, called VR Dose Simulator, which aims to provide interactive radiation safety and ALARA training to radiation workers using virtual-reality (VR) simulations. Combined with a pre-calculated effective dose equivalent (EDE) database, a virtual radiation environment was constructed in VR authoring software, EON Studio, using 3-D models of a real nuclear power plant building. Models of avatars representing two workers were adopted with arms and legs of the avatar being controlled in the software to simulate walking and other postures. Collision detection algorithms were developed for various parts of the 3-D power plant building and avatars to confine the avatars to certain regions of the virtual environment. Ten different camera viewpoints were assigned to conveniently cover the entire virtual scenery in different viewing angles. A user can control the avatar to carry out radiological engineering tasks using two modes of avatar navigation. A user can also specify two types of radiation source: Cs and Co. The location of the avatar inside the virtual environment during the course of the avatar's movement is linked to the EDE database. The accumulative dose is calculated and displayed on the screen in real-time. Based on the final accumulated dose and the completion status of all virtual tasks, a score is given to evaluate the performance of the user. The paper concludes that VR-based simulation technologies are interactive and engaging, thus potentially useful in improving the quality of radiation safety training. The paper also summarizes several challenges: more streamlined data conversion, realistic avatar movement and posture, more intuitive implementation of the data communication between EON Studio and VB.NET, and more versatile utilization of EDE data such as a source near the body, etc., all of which needs to be addressed in future efforts to develop this type of software.

Full Text

Duke Authors

Cited Authors

  • Ding, A; Zhang, D; Xu, XG

Published Date

  • May 2009

Published In

Volume / Issue

  • 96 / 5

Start / End Page

  • 594 - 601

PubMed ID

  • 19359853

Pubmed Central ID

  • 19359853

Electronic International Standard Serial Number (EISSN)

  • 1538-5159

International Standard Serial Number (ISSN)

  • 0017-9078

Digital Object Identifier (DOI)

  • 10.1097/01.hp.0000343165.50464.ef

Language

  • eng