Skip to main content
Journal cover image

Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2-isoprostanes: The CALERIE 2 randomized clinical trial.

Publication ,  Journal Article
Il'yasova, D; Fontana, L; Bhapkar, M; Pieper, CF; Spasojevic, I; Redman, LM; Das, SK; Huffman, KM; Kraus, WE; CALERIE Study Investigators,
Published in: Aging Cell
April 2018

Calorie restriction (CR) without malnutrition slows aging in animal models. Oxidative stress reduction was proposed to mediate CR effects. CR effect on urinary F2-isoprostanes, validated oxidative stress markers, was assessed in CALERIE, a two-year randomized controlled trial. Healthy volunteers (n = 218) were randomized to prescribed 25% CR (n = 143) or ad libitum control (AL, n = 75) stratifying the randomization schedule by site, sex, and BMI. F2-isoprostanes were quantified using LC-MS/MS in morning, fasted urine specimens at baseline, at 12 and 24 months. The primary measure of oxidative status was creatinine-adjusted 2,3-dinor-iPF(2α)-III concentration, additional measured included iPF(2α)-III, iPF2a-VI, and 8,12-iso-iPF2a-VI. Intention-to-treat analyses assessed change in 2,3-dinor-iPF(2α)-III using mixed models assessing treatment, time, and treatment-by-time interaction effects, adjusted for blocking variables and baseline F2-isoprostane value. Exploratory analyses examined changes in iPF(2α)-III, iPF(2α)-VI, and 8,12-iso-iPF(2α)-VI. A factor analysis used aggregate information on F2-isoprostane values. In CR group, 2,3-dinor-iPF(2α)-III concentrations were reduced from baseline by 17% and 13% at 12 and 24 months, respectively; these changes were significantly different from AL group (p < .01). CR reduced iPF(2α)-III concentrations by 20% and 27% at 12 and 24 months, respectively (p < .05). The effects were weaker on the VI-species. CR caused statistically significant reduction in isoprostane factor at both time points, and mean (se) changes were -0.36 (0.06) and -0.31 (0.06). No significant changes in isoprostane factor were at either time point in AL group (p < .01 between-group difference). We conclude that two-year CR intervention in healthy, nonobese men and women reduced whole body oxidative stress as assessed by urinary concentrations of F2-isoprostanes.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Aging Cell

DOI

EISSN

1474-9726

Publication Date

April 2018

Volume

17

Issue

2

Location

England

Related Subject Headings

  • Oxidative Stress
  • Male
  • Humans
  • Healthy Volunteers
  • Female
  • F2-Isoprostanes
  • Developmental Biology
  • Caloric Restriction
  • Adult
  • 32 Biomedical and clinical sciences
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Il’yasova, D., Fontana, L., Bhapkar, M., Pieper, C. F., Spasojevic, I., Redman, L. M., … CALERIE Study Investigators, . (2018). Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2-isoprostanes: The CALERIE 2 randomized clinical trial. Aging Cell, 17(2). https://doi.org/10.1111/acel.12719
Il’yasova, Dora, Luigi Fontana, Manjushri Bhapkar, Carl F. Pieper, Ivan Spasojevic, Leanne M. Redman, Sai Krupa Das, Kim M. Huffman, William E. Kraus, and William E. CALERIE Study Investigators. “Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2-isoprostanes: The CALERIE 2 randomized clinical trial.Aging Cell 17, no. 2 (April 2018). https://doi.org/10.1111/acel.12719.
Il’yasova D, Fontana L, Bhapkar M, Pieper CF, Spasojevic I, Redman LM, et al. Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2-isoprostanes: The CALERIE 2 randomized clinical trial. Aging Cell. 2018 Apr;17(2).
Il’yasova, Dora, et al. “Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2-isoprostanes: The CALERIE 2 randomized clinical trial.Aging Cell, vol. 17, no. 2, Apr. 2018. Pubmed, doi:10.1111/acel.12719.
Il’yasova D, Fontana L, Bhapkar M, Pieper CF, Spasojevic I, Redman LM, Das SK, Huffman KM, Kraus WE, CALERIE Study Investigators. Effects of 2 years of caloric restriction on oxidative status assessed by urinary F2-isoprostanes: The CALERIE 2 randomized clinical trial. Aging Cell. 2018 Apr;17(2).
Journal cover image

Published In

Aging Cell

DOI

EISSN

1474-9726

Publication Date

April 2018

Volume

17

Issue

2

Location

England

Related Subject Headings

  • Oxidative Stress
  • Male
  • Humans
  • Healthy Volunteers
  • Female
  • F2-Isoprostanes
  • Developmental Biology
  • Caloric Restriction
  • Adult
  • 32 Biomedical and clinical sciences