Ranking Coal Ash Materials for Their Potential to Leach Arsenic and Selenium: Relative Importance of Ash Chemistry and Site Biogeochemistry.


Journal Article

The chemical composition of coal ash is highly heterogeneous and dependent on the origin of the source coal, combustion parameters, and type and configuration of air pollution control devices. This heterogeneity results in uncertainty in the evaluation of leaching potential of contaminants from coal ash. The goal of this work was to identify whether a single leaching protocol could roughly group high-leaching potential coal ash from low-leaching potential coal ash, with respect to arsenic (As) and selenium (Se). We used four different leaching tests, including the Toxicity Characteristic Leaching Protocol (TCLP), natural pH, aerobic sediment microcosms, and anaerobic sediment microcosms on 10 different coal ash materials, including fly ash, lime-treated ash, and flue gas desulfurization materials. Leaching tests showed promise in categorizing high and low-leaching potential ash materials, indicating that a single point test could act as a first screening measure to identify high-risk ash materials. However, the amount of contaminant leached varied widely across tests, reflecting the importance of ambient conditions (pH, redox state) on leaching. These results demonstrate that on-site geochemical conditions play a critical role in As and Se mobilization from coal ash, underscoring the need to develop a situation-based risk assessment framework for contamination by coal ash pollutants.

Full Text

Duke Authors

Cited Authors

  • Schwartz, GE; Hower, JC; Phillips, AL; Rivera, N; Vengosh, A; Hsu-Kim, H

Published Date

  • July 2018

Published In

Volume / Issue

  • 35 / 7

Start / End Page

  • 728 - 738

PubMed ID

  • 29983540

Pubmed Central ID

  • 29983540

Electronic International Standard Serial Number (EISSN)

  • 1557-9018

International Standard Serial Number (ISSN)

  • 1092-8758

Digital Object Identifier (DOI)

  • 10.1089/ees.2017.0347


  • eng