Skip to main content
construction release_alert
Scholars@Duke will be undergoing maintenance April 11-15. Some features may be unavailable during this time.
cancel

Influence of hepatic and intestinal cytochrome P4503A activity on the acute disposition and effects of oral transmucosal fentanyl citrate.

Publication ,  Journal Article
Kharasch, ED; Whittington, D; Hoffer, C
Published in: Anesthesiology
September 2004

BACKGROUND: Oral transmucosal fentanyl citrate (OTF) was developed to provide rapid analgesia and is specifically approved for treating breakthrough cancer pain. Fentanyl in OTF is absorbed across the oral mucosa, but a considerable portion is swallowed and absorbed enterally. Fentanyl metabolism is catalyzed by cytochrome P4503A4 (CYP3A). The role of intestinal or hepatic first-pass metabolism and CYP3A activity in OTF disposition is unknown. This investigation examined the influence of hepatic and intestinal CYP3A activity on the disposition and clinical effects of OTF. METHODS: Healthy volunteers (n = 12) were studied in an Institutional Review Board-approved, randomized, balanced, four-way crossover. They received OTF (10 microg/kg) after hepatic/intestinal CYP3A induction by rifampin, hepatic/intestinal CYP3A inhibition by troleandomycin, selective intestinal CYP3A inhibition by grapefruit juice, or nothing (control). Plasma fentanyl and norfentanyl concentrations were determined by mass spectrometry. Fentanyl effects were measured by dark-adapted pupil diameter and subjective self-assessments using visual analog scales. RESULTS: : Peak plasma fentanyl concentrations, time to peak, and maximum pupil diameter change from baseline were unchanged after rifampin, troleandomycin, and grapefruit juice. Fentanyl elimination, however, was significantly affected by CYP3A alterations. After control, rifampin, troleandomycin and grapefruit juice, respectively, area under the curve of plasma fentanyl versus time was 5.9 +/- 3.7, 2.2 +/- 0.8,* 10.4 +/- 8.9,* and 5.8 +/- 3.3 h x ng/ml; norfentanyl/fentanyl plasma area under the curve ratios were 0.92 +/- 0.63, 3.2 +/- 1.8,* 0.08 +/- 0.14,* and 0.67 +/- 0.33 (*P < 0.05 versus control). DISCUSSION: Peak fentanyl concentrations and clinical effects after OTF were minimally affected by altering both intestinal and hepatic CYP3A activity, whereas fentanyl metabolism, elimination, and duration of effects were significantly affected; selective intestinal CYP3A inhibition had minimal effects. This suggests that first-pass metabolism minimally influences OTF bioavailability. When treating breakthrough pain, with careful attention to maximal mucosal absorption and minimal swallowing, CYP3A variability and drug interactions are unlikely to affect the onset or magnitude of OTF analgesia; however, duration may be affected.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Anesthesiology

DOI

ISSN

0003-3022

Publication Date

September 2004

Volume

101

Issue

3

Start / End Page

729 / 737

Location

United States

Related Subject Headings

  • Troleandomycin
  • Spectrometry, Mass, Electrospray Ionization
  • Rifampin
  • Pupil
  • Oxidoreductases, N-Demethylating
  • Male
  • Liver
  • Intestines
  • Humans
  • Half-Life
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Kharasch, E. D., Whittington, D., & Hoffer, C. (2004). Influence of hepatic and intestinal cytochrome P4503A activity on the acute disposition and effects of oral transmucosal fentanyl citrate. Anesthesiology, 101(3), 729–737. https://doi.org/10.1097/00000542-200409000-00022
Kharasch, Evan D., Dale Whittington, and Christine Hoffer. “Influence of hepatic and intestinal cytochrome P4503A activity on the acute disposition and effects of oral transmucosal fentanyl citrate.Anesthesiology 101, no. 3 (September 2004): 729–37. https://doi.org/10.1097/00000542-200409000-00022.
Kharasch, Evan D., et al. “Influence of hepatic and intestinal cytochrome P4503A activity on the acute disposition and effects of oral transmucosal fentanyl citrate.Anesthesiology, vol. 101, no. 3, Sept. 2004, pp. 729–37. Pubmed, doi:10.1097/00000542-200409000-00022.

Published In

Anesthesiology

DOI

ISSN

0003-3022

Publication Date

September 2004

Volume

101

Issue

3

Start / End Page

729 / 737

Location

United States

Related Subject Headings

  • Troleandomycin
  • Spectrometry, Mass, Electrospray Ionization
  • Rifampin
  • Pupil
  • Oxidoreductases, N-Demethylating
  • Male
  • Liver
  • Intestines
  • Humans
  • Half-Life