On discrete Wigner transforms

Journal Article

In this work, we derive a discrete analog of the Wigner transform over the space $(\mathbb{C}^p)^{\otimes N}$ for any prime $p$ and any positive integer $N$. We show that the Wigner transform over this space can be constructed as the inverse Fourier transform of the standard Pauli matrices for $p=2$ or more generally of the Heisenberg-Weyl group elements for $p > 2$. We connect our work to a previous construction by Wootters of a discrete Wigner transform by showing that for all $p$, Wootters' construction corresponds to taking the inverse symplectic Fourier transform instead of the inverse Fourier transform. Finally, we discuss some implications of these results for the numerical simulation of many-body quantum spin systems.

Full Text

Duke Authors

Cited Authors

  • Cai, Z; Lu, J; Stubbs, K