Is the kinetic equation for turbulent gas-particle flows ill posed?

Published

Journal Article

© 2018 American Physical Society. This paper is about the kinetic equation for gas-particle flows, in particular its well-posedness and realizability and its relationship to the generalized Langevin model (GLM) probability density function (PDF) equation. Previous analyses, e.g. [J.-P. Minier and C. Profeta, Phys. Rev. E 92, 053020 (2015)PLEEE81539-375510.1103/PhysRevE.92.053020], have concluded that this kinetic equation is ill posed, that in particular it has the properties of a backward heat equation, and as a consequence, its solution will in the course of time exhibit finite-time singularities. We show that this conclusion is fundamentally flawed because it ignores the coupling between the phase space variables in the kinetic equation and the time and particle inertia dependence of the phase space diffusion tensor. This contributes an extra positive diffusion that always outweighs the negative diffusion associated with the dispersion along one of the principal axes of the phase space diffusion tensor. This is confirmed by a numerical evaluation of analytic solutions of these positive and negative contributions to the particle diffusion coefficient along this principal axis. We also examine other erroneous claims and assumptions made in previous studies that demonstrate the apparent superiority of the GLM PDF approach over the kinetic approach. In so doing, we have drawn attention to the limitations of the GLM approach, which these studies have ignored or not properly considered, to give a more balanced appraisal of the benefits of both PDF approaches.

Full Text

Duke Authors

Cited Authors

  • Reeks, M; Swailes, DC; Bragg, AD

Published Date

  • February 13, 2018

Published In

Volume / Issue

  • 97 / 2

Electronic International Standard Serial Number (EISSN)

  • 2470-0053

International Standard Serial Number (ISSN)

  • 2470-0045

Digital Object Identifier (DOI)

  • 10.1103/PhysRevE.97.023104

Citation Source

  • Scopus