Nuclear factor-kappaB mediates Kupffer cell apoptosis through transcriptional activation of Fas/FasL.

Conference Paper

INTRODUCTION: Nuclear factor (NF)-kappaB is a key transcriptional factor for cell survival, inflammation, and stress response. We demonstrated that Kupffer cell-derived FasL plays a central role in pancreatitis-induced hepatocyte injury. The aim of this study was to determine the role of NF-kappaB in regulating death ligand/receptor pathway in Kupffer cells during conditions that mimic acute pancreatitis. MATERIALS AND METHODS: Tissue cultures of rat Kupffer cells were treated with elastase (1 U/L) to mimic pancreatitis before and after infection with AdIkappaB to block activation of NF-kappaB. Tumor necrosis factor (enzyme-linked immunoassay), Fas/FasL, and caspase-3 (Western), tumor necrosis factor and Fas/FasL mRNA (reverse-transcription polymerase chain reaction), and NF-kappaB DNA binding (electrophoretic mobility shift assay) were determined. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling (TUNEL) and DNA fragmentation. Gels were quantified by densitometry. Data (n=3) are mean+/-SEM; student's t test was used for statistical analysis. RESULTS: AdIkappaB infection up-regulated mutated IkappaBalpha that maintained its binding properties to NF-kappaB. Promoter-reporter assay demonstrated that FasL gene promoter was regulated by NF-kappaB. Infection with AdIkappaB attenuated the elastase-induced up-regulation of Fas/FasL (all P<0.01 versus elastase) and NF-kappaB DNA binding but did not affect elastase-induced up-regulation of TNF. AdIkappaB attenuated elastase-induced cleavage of caspase-3, DNA fragmentation and TUNEL staining (all P<0.01 versus elastase). CONCLUSIONS: Inhibition of NF-kappaB DNA binding down-regulates Fas/FasL and attenuates elastase-induced apoptosis; however, it has no effect on TNF production, suggesting that regulation of Fas/FasL and TNF may occur via different pathways. The ability of Kupffer cells to autoregulate their stress response by up-regulating their death ligand/receptor and apoptosis warrants further investigation.

Full Text

Duke Authors

Cited Authors

  • Peng, Y; Gallagher, SF; Haines, K; Baksh, K; Murr, MM

Published Date

  • January 2006

Published In

Volume / Issue

  • 130 / 1

Start / End Page

  • 58 - 65

PubMed ID

  • 16154149

International Standard Serial Number (ISSN)

  • 0022-4804

Digital Object Identifier (DOI)

  • 10.1016/j.jss.2005.07.030

Conference Location

  • United States