Early Stage HER2-Positive Breast Cancers Not Achieving a pCR From Neoadjuvant Trastuzumab- or Pertuzumab-Based Regimens Have an Immunosuppressive Phenotype.

Published

Journal Article

BACKGROUND: Stromal tumor-infiltrating lymphocytes (TILs) might predict pathologic complete response (pCR) in patients with HER2-positive (HER2+) breast cancer treated with trastuzumab (H). Docetaxel (T), carboplatin (C), H, and pertuzumab (P) have immune-modulating effects. Pre- and post-treatment immune biomarkers in cancers treated with neoadjuvant TCH with or without P are lacking. In this study we quantified baseline and changes in TILs, cluster of differentiation (CD) 4+, CD8+, FoxP3+, and PD-L1+ cells using immunohistochemistry (IHC) and quantified productive T-cell receptor β (TCRβ) rearrangements and TCRβ clonality using next-generation sequencing (NGS) in 30 HER2+ breast cancer tissues treated with neoadjuvant H with or without P regimens. MATERIALS AND METHODS: Thirty pre- and post-neoadjuvant TCH (n = 4) or TCHP (n = 26) breast cancer tissues were identified. TILs were quantified manually using hematoxylin and eosin. CD4, CD8, FoxP3, and PD-L1 were stained using IHC. TCRβ was evaluated using NGS. Immune infiltrates were compared between pCR and non-pCR groups using the Wilcoxon rank sum test. RESULTS: A pCR occurred in 15 (n = 15; 50%) cancers (TCH n = 2; TCHP, n = 13). Pretreatment TILs, CD4+, CD8+, FoxP3+, and PD-L1+ cells were not associated with response (P = .42, P = .55, P = .19, P = .66, P = .87, respectively. Pretreatment productive TCRβ and TCRβ clonality did not predict response, P = .84 and P = .40, respectively). However, post-treatment CD4+ and FoxP3+ cells (T-regulatory cells) were elevated in the non-pCR cohort (P = .042 and P = .082, respectively). CONCLUSION: An increase in regulatory T cells in non-pCR tissues suggests the development of an immunosuppressive phenotype. Further investigation in a larger cohort of samples is warranted to validate these findings.

Full Text

Duke Authors

Cited Authors

  • Force, J; Howie, LJ; Abbott, SE; Bentley, R; Marcom, PK; Kimmick, G; Westbrook, K; Sammons, SL; Parks, M; Topping, DL; Emerson, R; Broadwater, G; Hyslop, T; Blackwell, KL; Nair, SK

Published Date

  • October 2018

Published In

Volume / Issue

  • 18 / 5

Start / End Page

  • 410 - 417

PubMed ID

  • 29615305

Pubmed Central ID

  • 29615305

Electronic International Standard Serial Number (EISSN)

  • 1938-0666

Digital Object Identifier (DOI)

  • 10.1016/j.clbc.2018.02.010

Language

  • eng

Conference Location

  • United States