Cauchy problems for Keller–Segel type time–space fractional diffusion equation
This paper investigates Cauchy problems for nonlinear fractional time–space generalized Keller–Segel equation Dtβ0cρ+(−△)[Formula presented]ρ+∇⋅(ρB(ρ))=0, where Caputo derivative Dtβ0cρ models memory effects in time, fractional Laplacian (−△)[Formula presented]ρ represents Lévy diffusion and B(ρ)=−s
Duke Scholars
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics
Citation
Published In
DOI
EISSN
ISSN
Publication Date
Volume
Issue
Start / End Page
Related Subject Headings
- General Mathematics
- 4904 Pure mathematics
- 4901 Applied mathematics
- 0102 Applied Mathematics
- 0101 Pure Mathematics