Extracellular Vesicles: A Brief Overview and Its Role in Precision Medicine.

Published

Journal Article (Review)

Precision medicine has emerged as an approach to tailor therapies for an individual at the time of diagnosis and/or treatment. This emergence has been fueled by the ability to profile nucleic acids, along with proteins and lipids isolated from biofluids, a method called "liquid biopsy ," either by or in combination of one of the following components: circulating tumor cells (CTCs), cell-free DNA (cfDNA), and/or extracellular vesicles (EVs) . EVs are membrane-surrounded structures released by cells in an evolutionarily conserved manner. EVs have gained much attention from both the basic and clinical research areas, as EVs appear to play a role in many diseases; however, the well-known case is cancer. The hallmark of EVs in cancer is their role as mediators of communication between cells both at physiological and pathophysiological levels; hence, EVs are thought to contribute to the creation of a microenvironmental niche that promotes cancer cell survival, as well as reprogramming distant tissue for invasion. It is important to understand the mechanistic and functional aspects at the basic science level of EVs to get a better grasp on their role in healthy and disease states. EVs range from 30-1000 nm membrane-enclosed vesicles that are released by many mammalian cell types and present in a variety of biofluids. EVs have emerged as an area of clinical interest in the era of Precision Medicine, from their role in liquid biopsy (tissue biopsy free) approach for screening, assessing tumor heterogeneity, monitoring therapeutic responses, and minimal residual disease detection to EV-based therapeutics . EVs' diagnostic and therapeutic exploitation is under intense investigation in various indications. This chapter highlights EV biogenesis , composition of EVs, and their potential role in liquid biopsy diagnostics and therapeutics in the area of cancer.

Full Text

Duke Authors

Cited Authors

  • Shang, M; Ji, JS; Song, C; Gao, BJ; Jin, JG; Kuo, WP; Kang, H

Published Date

  • January 2017

Published In

Volume / Issue

  • 1660 /

Start / End Page

  • 1 - 14

PubMed ID

  • 28828643

Pubmed Central ID

  • 28828643

Electronic International Standard Serial Number (EISSN)

  • 1940-6029

International Standard Serial Number (ISSN)

  • 1064-3745

Digital Object Identifier (DOI)

  • 10.1007/978-1-4939-7253-1_1

Language

  • eng