Patterned Liquid Metal Contacts for Printed Carbon Nanotube Transistors.

Published

Journal Article

Flexible and stretchable electronics are poised to enable many applications that cannot be realized with traditional, rigid devices. One of the most promising options for low-cost stretchable transistors are printed carbon nanotubes (CNTs). However, a major limiting factor in stretchable CNT devices is the lack of a stable and versatile contact material that forms both the interconnects and contact electrodes. In this work, we introduce the use of eutectic gallium-indium (EGaIn) liquid metal for electrical contacts to printed CNT channels. We analyze thin-film transistors (TFTs) fabricated using two different liquid metal deposition techniques-vacuum-filling polydimethylsiloxane (PDMS) microchannel structures and direct-writing liquid metals on the CNTs. The highest performing CNT-TFT was realized using vacuum-filled microchannel deposition with an in situ annealing temperature of 150 °C. This device exhibited an on/off ratio of more than 104 and on-currents as high as 150 μA/mm-metrics that are on par with other printed CNT-TFTs. Additionally, we observed that at room temperature the contact resistances of the vacuum-filled microchannel structures were 50% lower than those of the direct-write structures, likely due to the poor adhesion between the materials observed during the direct-writing process. The insights gained in this study show that stretchable electronics can be realized using low-cost and solely solution processing techniques. Furthermore, we demonstrate methods that can be used to electrically characterize semiconducting materials as transistors without requiring elevated temperatures or cleanroom processes.

Full Text

Duke Authors

Cited Authors

  • Andrews, JB; Mondal, K; Neumann, TV; Cardenas, JA; Wang, J; Parekh, DP; Lin, Y; Ballentine, P; Dickey, MD; Franklin, AD

Published Date

  • June 2018

Published In

Volume / Issue

  • 12 / 6

Start / End Page

  • 5482 - 5488

PubMed ID

  • 29741864

Pubmed Central ID

  • 29741864

Electronic International Standard Serial Number (EISSN)

  • 1936-086X

International Standard Serial Number (ISSN)

  • 1936-0851

Digital Object Identifier (DOI)

  • 10.1021/acsnano.8b00909

Language

  • eng