Crizotinib and erlotinib inhibits growth of c-Met+/EGFRvIII+ primary human glioblastoma xenografts.

Published

Journal Article

OBJECTIVES: Receptor tyrosine kinases (RTK), such as c-Met and epidermal growth factor receptor (EGFR), are implicated in the malignant progression of glioblastoma. Studies show that RTK systems can co-modulate distinct and overlapping oncogenic downstream signaling pathways. EGFRvIII, a constitutively activated EGFR deletion mutant variant, leads to increased tumor growth and diminishes the tumor growth response to HGF: c-Met pathway inhibitor therapy. Conversely, activation of the c-Met pathway diminishes the tumor growth response to EGFR pathway inhibitors. Previously we reported that EGFRvIII and c-Met pathway inhibitors synergize to inhibit tumor growth in isogenic GBM cell lines engineered to express EGFRvIII. More recently, studies suggest that despite targeting RTK signaling in glioblastoma multiforme, a subpopulation of stem-like tumor-propagating cells can persist to replenish the tumor cell population leading to tumor recurrence. PATIENTS AND METHODS: Mayo 39 and Mayo 59 xenograft lines were cultured and xenografts were maintained. Subcutaneous xenograft lines were serially passaged in nude mice to generate subcutaneous xenografts. Xenografts were implanted in 6-8 week old nude mice. Once tumors reached a substantial size (150 mm3), mice were randomly divided into 4 groups: 1) control vehicle, 2) Crizotinib (crizo), 3) Erlotinib (erlot), or 4) Crizotinib + Erlotinib, (n = 5 per group). RESULTS: Crizotinib (c-Met pathway inhibitor) and Erlotinib (EGFR pathway inhibitor) in combination significantly inhibited tumor growth, phospho-EGFRvIII, phospho-Met, phospho-AKT, phospho-MAPK, and neurosphere growth in Mayo 39 and Mayo 59 primary GBM subcutaneous xenografts. The expression of the stem cell markers Nestin, Musashi, Olig 2 and Sox2 were also significantly down-regulated by c-Met inhibition, but no additive down-regulation was seen by co-treatment with Erlotinib. CONCLUSIONS: These results are consistent with and corroborate our previous findings demonstrating that targeting these two parallel pathways with c-Met and EGFR inhibitor therapy provides substantial anti-tumor activity in glioblastoma models.

Full Text

Duke Authors

Cited Authors

  • Goodwin, CR; Rath, P; Oyinlade, O; Lopez, H; Mughal, S; Xia, S; Li, Y; Kaur, H; Zhou, X; Ahmed, AK; Ho, S; Olivi, A; Lal, B

Published Date

  • August 2018

Published In

Volume / Issue

  • 171 /

Start / End Page

  • 26 - 33

PubMed ID

  • 29803091

Pubmed Central ID

  • 29803091

Electronic International Standard Serial Number (EISSN)

  • 1872-6968

Digital Object Identifier (DOI)

  • 10.1016/j.clineuro.2018.02.041

Language

  • eng

Conference Location

  • Netherlands