Development of a laboratory based XRF facility for measuring elemental abundance ratios in planetary analogue powder samples

Published

Conference Paper

This paper describes the use of a swept-charge device (SCD) silicon X-ray detector in a laboratory based X-ray fluorescence (XRF) facility for calculating elemental abundance ratios from planetary analogue powder samples. The facility was developed to support the Chandrayaan-1 X-ray Spectrometer (C1XS) detector development and calibration activities prior to the flight of the instrument onboard the Indian Space Research Organisation (ISRO) Chandrayaan-1 mission to the Moon in 2008. The test facility has subsequently been used to carry out XRF analysis of homogenous samples made from mixtures of MgO, Al2O 3 and SiO2 powders, all of grain size <44 μm, across a range of mixture ratios and at a high level of X-ray flux data in order to develop an algorithm which will allow the calculation of elemental abundance ratios. This paper also presents an analysis of XRF data collected from lunar regolith simulant JSC-1A and an Etna Basalt powder sample to enable calibration of various model parameters. The operation of the SCD, the XRF test facility, the sample preparation methodology and the process of obtaining elemental abundance ratios from planetary analogue samples using the test facility are discussed in this paper. © 2012 SPIE.

Full Text

Duke Authors

Cited Authors

  • Walker, TE; Smith, DR

Published Date

  • December 1, 2012

Published In

Volume / Issue

  • 8453 /

International Standard Serial Number (ISSN)

  • 0277-786X

International Standard Book Number 13 (ISBN-13)

  • 9780819491541

Digital Object Identifier (DOI)

  • 10.1117/12.926978

Citation Source

  • Scopus