Lateral density of receptor arrays in the membrane plane influences sensitivity of the E. coli chemotaxis response.
Journal Article (Journal Article)
In chemotactic bacteria, transmembrane chemoreceptors, CheA and CheW form the core signalling complex of the chemotaxis sensory apparatus. These complexes are organized in extended arrays in the cytoplasmic membrane that allow bacteria to respond to changes in concentration of extracellular ligands via a cooperative, allosteric response that leads to substantial amplification of the signal induced by ligand binding. Here, we have combined cryo-electron tomographic studies of the 3D spatial architecture of chemoreceptor arrays in intact E. coli cells with computational modelling to develop a predictive model for the cooperativity and sensitivity of the chemotaxis response. The predictions were tested experimentally using fluorescence resonance energy transfer (FRET) microscopy. Our results demonstrate that changes in lateral packing densities of the partially ordered, spatially extended chemoreceptor arrays can modulate the bacterial chemotaxis response, and that information about the molecular organization of the arrays derived by cryo-electron tomography of intact cells can be translated into testable, predictive computational models of the chemotaxis response.
Full Text
Duke Authors
Cited Authors
- Khursigara, CM; Lan, G; Neumann, S; Wu, X; Ravindran, S; Borgnia, MJ; Sourjik, V; Milne, J; Tu, Y; Subramaniam, S
Published Date
- May 4, 2011
Published In
Volume / Issue
- 30 / 9
Start / End Page
- 1719 - 1729
PubMed ID
- 21441899
Pubmed Central ID
- PMC3101988
Electronic International Standard Serial Number (EISSN)
- 1460-2075
Digital Object Identifier (DOI)
- 10.1038/emboj.2011.77
Language
- eng
Conference Location
- England