Relating ranging ecology, limb length, and locomotor economy in terrestrial animals.

Journal Article (Journal Article)

Ecomorphological analyses have identified a number of important evolutionary trends in vertebrate limb design, but the relationships between daily travel distance, locomotor ecology, and limb length in terrestrial animals remain poorly understood. In this paper I model the net rate of energy intake as a function of foraging efficiency, and thus of locomotor economy; improved economy leads to greater net energy intake. However, the relationship between locomotor economy and net intake is highly dependent on foraging efficiency; only species with low foraging efficiencies experience strong selection pressure for improved locomotor economy and increased limb length. Examining 237 terrestrial species, I find that nearly all taxa obtain sufficiently high foraging efficiencies that selection for further increases in economy is weak. Thus selection pressures for increased economy and limb length among living terrestrial animals may be relatively weak and similar in magnitude across ecologically diverse species. The Economy Selection Pressure model for locomotor economy may be useful in investigating the evolution of limb design in early terrestrial taxa and the coevolution of foraging ecology and locomotor anatomy in lineages with low foraging efficiencies.

Full Text

Duke Authors

Cited Authors

  • Pontzer, H

Published Date

  • March 2012

Published In

Volume / Issue

  • 296 /

Start / End Page

  • 6 - 12

PubMed ID

  • 22138093

Electronic International Standard Serial Number (EISSN)

  • 1095-8541

International Standard Serial Number (ISSN)

  • 0022-5193

Digital Object Identifier (DOI)

  • 10.1016/j.jtbi.2011.11.018


  • eng