Modeling of fault gouges with Cosserat Continuum Mechanics: Influence of thermal pressurization and chemical decomposition as coseismic weakening mechanisms

Published

Journal Article

In this paper we study the impact of thermal pressurization and mineral decomposition reactions under seismic deformation conditions (e.g., slip rates of about 1 m/s) triggered by shear heating, to the stability of a saturated fault material. By using higher order continuum considerations, allowing for rotational degrees of freedom to the gouge material, we verify that the micro-inertia of the Cosserat Continuum may regularize the ill-posed problem of simple shear of a fault and that the thermal effects promote localization of deformation into ultra-thin shear bands. It is shown that the width of these structures depends on the parameters of the decomposition reaction considered, obtaining values as low as 100 μm, in agreement with microstructural evidence from natural and artificial faults. © 2011 Elsevier Ltd.

Full Text

Duke Authors

Cited Authors

  • Veveakis, E; Sulem, J; Stefanou, I

Published Date

  • May 1, 2012

Published In

Volume / Issue

  • 38 /

Start / End Page

  • 254 - 264

International Standard Serial Number (ISSN)

  • 0191-8141

Digital Object Identifier (DOI)

  • 10.1016/j.jsg.2011.09.012

Citation Source

  • Scopus