Topologically Induced Glass Transition in Freely Rotating Rods

Journal Article (Academic article)

We present a simple minimal model which allows numerical and analytical study of a glass transition. This is a model of rigid rods with fixed centers of rotation. The rods can rotate freely but cannot cross each other. The ratio l of the length of the rods to the distance between the centers of rotation is the only parameter of this model. With increasing l we observed a sharp crossover to practically infinite relaxation times in 2d arrays of rods. In 3d we found a real transition to a completely frozen random state at l(c) congruent to 4.5.

Full Text

Duke Authors

Cited Authors

  • Obukhov, S; Kobzev, D; Perchak, D; Rubinstein, M

Published Date

  • 1997

Published In

International Standard Serial Number (ISSN)

  • 1155-4304

Digital Object Identifier (DOI)

  • 10.1051/jp1:1997175