Mechanical forces imposed on echinoid eggs during spawning: mitigation of forces by fibrous networks within egg extracellular layers.

Published

Journal Article (Review)

Many echinoderms spawn large numbers of eggs in rapid spawning bouts directly into the water column. During spawning, the eggs pass from the gonad along a narrow oviduct and through a rigid gonopore before reaching the water. As the eggs traverse this pathway, they are exposed to shear stress induced by the development of a velocity gradient within the fluid formed by the eggs. In some species, the diameter of the eggs is larger than the diameter of the gonopore. In these cases, the eggs also experience strain resulting from compression of the egg as it passes through the relatively small gonopore. The magnitude of shear stress experienced by eggs differs among species depending upon the viscosity of the eggs. The degree of strain experienced by eggs differs among species depending upon the relative sizes of the egg and gonopore and also changes within species as they grow. Recent evidence suggests that these forces have the propensity to damage eggs, thereby reducing their fertilizability, or to destroy them. Experimental evidence shows that the jelly coat around the eggs can protect them from shear stresses and reduce the strain imposed on them under a compressive force. Echinoderm eggs are surrounded by a jelly coat that has a composite structure of irregularly arranged fibrous networks embedded in a jelly matrix. These fibrous networks have characteristics that are similar to those of engineered and biological materials that are known to reduce the transmission of mechanical forces to other structures. Given this similarity to other materials, three possible mechanisms for the action of the jelly coat may be identified. First, the apparent viscosity of the eggs of echinoids declines as the rate at which they are sheared during spawning increases. This reduction in viscosity with increasing shear rate (shear-thinning) may, in part, be due to the structure of the jelly coat and its resultant non-Newtonian nature. Second, experimental evidence indicates that the jelly coat preferentially deforms under a compressive load, reducing the transmission of that load to the egg. Third, the jelly (but not the fibers in the coating) may deform in a nearly viscous manner. In this case, the fibers may serve to provide an elastic 'backbone' to the layer and remain in place to stiffen the outer layer of the egg. The composite structure of the jelly coat and the morphology of the fibrous network are likely to be critical to all these mechanisms.

Full Text

Cited Authors

  • Thomas, F; Bolton, T; Sastry, A

Published Date

  • March 2001

Published In

Volume / Issue

  • 204 / Pt 5

Start / End Page

  • 815 - 821

PubMed ID

  • 11171405

Pubmed Central ID

  • 11171405

Electronic International Standard Serial Number (EISSN)

  • 1477-9145

International Standard Serial Number (ISSN)

  • 0022-0949

Language

  • eng