Discovery of Selective Estrogen Receptor Covalent Antagonists for the Treatment of ERαWT and ERαMUT Breast Cancer.

Published

Journal Article

Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ERα antagonists referred to as selective estrogen receptor covalent antagonists (SERCA). In vitro comparisons of H3B-5942 with standard-of-care (SoC) and experimental agents confirmed increased antagonist activity across a panel of ERαWT and ERαMUT cell lines. In vivo, H3B-5942 demonstrated significant single-agent antitumor activity in xenograft models representing ERαWT and ERαY537S breast cancer that was superior to fulvestrant. Lastly, H3B-5942 potency can be further improved in combination with CDK4/6 or mTOR inhibitors in both ERαWT and ERαMUT cell lines and/or tumor models. In summary, H3B-5942 belongs to a class of orally available ERα covalent antagonists with an improved profile over SoCs.Significance: Nearly 30% of endocrine therapy-resistant breast cancer metastases harbor constitutively activating mutations in ERα. SERCA H3B-5942 engages C530 of both ERαWT and ERαMUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over SoC agents. Importantly, single-agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors. Cancer Discov; 8(9); 1176-93. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.

Full Text

Duke Authors

Cited Authors

  • Puyang, X; Furman, C; Zheng, GZ; Wu, ZJ; Banka, D; Aithal, K; Agoulnik, S; Bolduc, DM; Buonamici, S; Caleb, B; Das, S; Eckley, S; Fekkes, P; Hao, M-H; Hart, A; Houtman, R; Irwin, S; Joshi, JJ; Karr, C; Kim, A; Kumar, N; Kumar, P; Kuznetsov, G; Lai, WG; Larsen, N; Mackenzie, C; Martin, L-A; Melchers, D; Moriarty, A; Nguyen, T-V; Norris, J; O'Shea, M; Pancholi, S; Prajapati, S; Rajagopalan, S; Reynolds, DJ; Rimkunas, V; Rioux, N; Ribas, R; Siu, A; Sivakumar, S; Subramanian, V; Thomas, M; Vaillancourt, FH; Wang, J; Wardell, S; Wick, MJ; Yao, S; Yu, L; Warmuth, M; Smith, PG; Zhu, P; Korpal, M

Published Date

  • September 2018

Published In

Volume / Issue

  • 8 / 9

Start / End Page

  • 1176 - 1193

PubMed ID

  • 29991605

Pubmed Central ID

  • 29991605

Electronic International Standard Serial Number (EISSN)

  • 2159-8290

Digital Object Identifier (DOI)

  • 10.1158/2159-8290.CD-17-1229

Language

  • eng

Conference Location

  • United States