A Nonequilibrium Molecular Dynamics Study of Infrared Perturbed Electron Transfer.

Journal Article (Journal Article)

Infrared (IR) excitation is known to change electron-transfer kinetics in molecules. We use nonequilibrium molecular dynamics (NEqMD) simulations to explore the molecular underpinnings of how vibrational excitation may influence nonadiabatic electron-transfer. NEqMD combines classical molecular dynamics simulations with nonequilibrium semiclassical initial conditions to simulate the dynamics of vibrationally excited molecules. We combine NEqMD with electronic structure computations to probe IR effects on electron transfer rates in two molecular species, dimethylaniline-guanosine-cytidine-anthracene (DMA-GC-Anth) and 4-(pyrrolidin-1-yl)phenyl-2,6,7-triazabicyclo[2.2.2]octatriene-10-cyanoanthracen-9-yl (PP-BCN-CA). In DMA-GC-Anth, the simulations find that IR excitation of the NH2 scissoring motion and the subsequent intramolecular vibrational energy redistribution (IVR) do not significantly alter the mean-squared donor-acceptor (DA) coupling interaction. This finding is consistent with earlier computational analysis of static systems. In PP-BCN-CA, IR excitation of the bridging C═N bond changes the bridge-mediated coupling for charge separation and recombination by ∼30-40%. The methods described here enable detailed explorations of how IR excitation may perturb charge-transfer processes at the molecular scale.

Full Text

Duke Authors

Cited Authors

  • Ma, Z; Antoniou, P; Zhang, P; Skourtis, SS; Beratan, DN

Published Date

  • September 2018

Published In

Volume / Issue

  • 14 / 9

Start / End Page

  • 4818 - 4832

PubMed ID

  • 30005159

Electronic International Standard Serial Number (EISSN)

  • 1549-9626

International Standard Serial Number (ISSN)

  • 1549-9618

Digital Object Identifier (DOI)

  • 10.1021/acs.jctc.8b00001


  • eng