Novel highly conductive ferroferric oxide/porous carbon nanofiber composites prepared by electrospinning as anode materials for high performance Li-ion batteries

Published

Journal Article

© 2016 The Royal Society of Chemistry. In this paper, ferroferric oxide (Fe 3 O 4 ) nanoparticles/porous carbon nanofiber (Fe 3 O 4 /PCNFs) composites were successfully fabricated by electrospinning and subsequent calcination. The composites were characterized by X-ray diffraction, thermogravimetric analysis, scanning electron microscopy and transmission electron microscopy to analyze the structure, composition and morphology. The electrochemical performance was evaluated by coin-type cells vs. metallic lithium. The results indicated that Fe 3 O 4 /PCNFs composites exhibited high reversible capacity and good capacity retention. The discharge capacity was maintained at 717.2 mA h g -1 at 0.5 A g -1 after 100 cycles. The excellent performances of Fe 3 O 4 /PCNFs composites are attributed to good crystallinity and uniformly dispersive Fe 3 O 4 nanoparticles, and a porous carbon shell with high conductivity. The carbon coating buffered the tremendous volumetric changes between Fe 3 O 4 nanoparticles and Fe atoms in the charge/discharge processes and kept the structure integrity of Fe 3 O 4 nanoparticles. Porous carbon nanofibers prepared by the unique calcination process improved the conductivity of composites and provided free space for migration of lithium ions. The preparation strategy is expected to be applicable to the preparation of other transition metal oxide materials as superior anode materials for lithium-ion batteries.

Full Text

Duke Authors

Cited Authors

  • Zhu, S; Chen, M; Sun, J; Liu, J; Wu, T; Su, H; Qu, S; Xie, Y; Wang, S; Su, X; Diao, G

Published Date

  • January 1, 2016

Published In

Volume / Issue

  • 6 / 63

Start / End Page

  • 58529 - 58540

Electronic International Standard Serial Number (EISSN)

  • 2046-2069

Digital Object Identifier (DOI)

  • 10.1039/c6ra04090j

Citation Source

  • Scopus