Skip to main content
Journal cover image

Synthesis, dopaminergic profile, and molecular dynamics calculations of N-aralkyl substituted 2-aminoindans.

Publication ,  Journal Article
Andujar, SA; de Angel, BM; Charris, JE; Israel, A; Suárez-Roca, H; López, SE; Garrido, MR; Cabrera, EV; Visbal, G; Rosales, C; Suvire, FD ...
Published in: Bioorganic & medicinal chemistry
March 2008

Brain dopaminergic system has a crucial role in the etiology of several neuropsychiatric disorders, including Parkinson's disease, depression, and schizophrenia. Several dopaminergic drugs are used to treat these pathologies, but many problems are attributed to these therapies. Within this context, the search for new more efficient dopaminergic agents with less adverse effects represents a vast research field. The aim of the present study was to synthesize N-[2-(4,5-dihydroxyphenyl)-methyl-ethyl]-4,5-dihydroxy-2-aminoindan hydrobromide (3), planned to be a dopamine ligand, and to evaluate its dopaminergic action profile. This compound was assayed as a diastereoisomeric mixture in two experimental models: stereotyped behavior (gnaw) and renal urinary response, after central administration. The pharmacological results showed that compound 3 significantly blocked the apomorphine-induced stereotypy and dopamine-induced diuresis and natriuresis in rats. Thus, compound 3 demonstrated an inhibitory effect on dopaminergic-induced behavior and renal action. N-[2-(-Methyl-ethyl)]-4,5-dihydroxy-2-aminoindan hydrobromide (4) was previously reported as an inotropic agent, and in the present work it was also re-evaluated as a diastereoisomeric mixture for its possible central action on the behavior parameters such as stereotypy and dopamine-induced diuresis and natriuresis in rats. Our results indicate that compound 4 produces an agonistic response, possibly through dopaminergic mechanisms. To better understand the experimental results we performed molecular dynamics simulations of two complexes: compound 3/D(2)DAR (dopamine receptor) and compound 4/D(2)DAR. The differential binding mode obtained for these complexes could explain the antagonist and agonist activity obtained for compounds 3 and 4, respectively.

Duke Scholars

Published In

Bioorganic & medicinal chemistry

DOI

EISSN

1464-3391

ISSN

0968-0896

Publication Date

March 2008

Volume

16

Issue

6

Start / End Page

3233 / 3244

Related Subject Headings

  • Structure-Activity Relationship
  • Stereotyped Behavior
  • Rats
  • Protein Binding
  • Motion
  • Models, Molecular
  • Medicinal & Biomolecular Chemistry
  • Indans
  • Dopamine Antagonists
  • Dopamine Agonists
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Andujar, S. A., de Angel, B. M., Charris, J. E., Israel, A., Suárez-Roca, H., López, S. E., … Angel-Guío, J. E. (2008). Synthesis, dopaminergic profile, and molecular dynamics calculations of N-aralkyl substituted 2-aminoindans. Bioorganic & Medicinal Chemistry, 16(6), 3233–3244. https://doi.org/10.1016/j.bmc.2007.12.027
Andujar, Sebastian A., Biagina Migliore de Angel, Jaime E. Charris, Anita Israel, Heberto Suárez-Roca, Simon E. López, Maria R. Garrido, et al. “Synthesis, dopaminergic profile, and molecular dynamics calculations of N-aralkyl substituted 2-aminoindans.Bioorganic & Medicinal Chemistry 16, no. 6 (March 2008): 3233–44. https://doi.org/10.1016/j.bmc.2007.12.027.
Andujar SA, de Angel BM, Charris JE, Israel A, Suárez-Roca H, López SE, et al. Synthesis, dopaminergic profile, and molecular dynamics calculations of N-aralkyl substituted 2-aminoindans. Bioorganic & medicinal chemistry. 2008 Mar;16(6):3233–44.
Andujar, Sebastian A., et al. “Synthesis, dopaminergic profile, and molecular dynamics calculations of N-aralkyl substituted 2-aminoindans.Bioorganic & Medicinal Chemistry, vol. 16, no. 6, Mar. 2008, pp. 3233–44. Epmc, doi:10.1016/j.bmc.2007.12.027.
Andujar SA, de Angel BM, Charris JE, Israel A, Suárez-Roca H, López SE, Garrido MR, Cabrera EV, Visbal G, Rosales C, Suvire FD, Enriz RD, Angel-Guío JE. Synthesis, dopaminergic profile, and molecular dynamics calculations of N-aralkyl substituted 2-aminoindans. Bioorganic & medicinal chemistry. 2008 Mar;16(6):3233–3244.
Journal cover image

Published In

Bioorganic & medicinal chemistry

DOI

EISSN

1464-3391

ISSN

0968-0896

Publication Date

March 2008

Volume

16

Issue

6

Start / End Page

3233 / 3244

Related Subject Headings

  • Structure-Activity Relationship
  • Stereotyped Behavior
  • Rats
  • Protein Binding
  • Motion
  • Models, Molecular
  • Medicinal & Biomolecular Chemistry
  • Indans
  • Dopamine Antagonists
  • Dopamine Agonists