Composite Cellularized Structures Created from an Interpenetrating Polymer Network Hydrogel Reinforced by a 3D Woven Scaffold.


Journal Article

Biomaterial scaffolds play multiple roles in cartilage tissue engineering, including controlling architecture of newly formed tissue while facilitating growth of embedded cells and simultaneously providing functional properties to withstand the mechanical environment within the native joint. In particular, hydrogels-with high water content and desirable transport properties-while highly conducive to chondrogenesis, often lack functional mechanical properties. In this regard, interpenetrating polymer network (IPN) hydrogels can provide mechanical toughness greatly exceeding that of individual components; however, many IPN materials are not biocompatible for cell encapsulation. In this study, an agarose and poly(ethylene) glycol IPN hydrogel is seeded with human mesenchymal stem cells (MSCs). Results show high viability of MSCs within the IPN hydrogel, with improved mechanical properties compared to constructs comprised of individual components. These properties are further strengthened by integrating the hydrogel with a 3D woven structure. The resulting fiber-reinforced hydrogels display functional macroscopic mechanical properties mimicking those of native articular cartilage, while providing a local microenvironment that supports cellular viability and function. These findings suggest that a fiber-reinforced IPN hydrogel can support stem cell chondrogenesis while allowing for significantly enhanced, complex mechanical properties at multiple scales as compared to individual hydrogel or fiber components.

Full Text

Cited Authors

  • Moffat, KL; Goon, K; Moutos, FT; Estes, BT; Oswald, SJ; Zhao, X; Guilak, F

Published Date

  • October 2018

Published In

Volume / Issue

  • 18 / 10

Start / End Page

  • e1800140 -

PubMed ID

  • 30040175

Pubmed Central ID

  • 30040175

Electronic International Standard Serial Number (EISSN)

  • 1616-5195

International Standard Serial Number (ISSN)

  • 1616-5187

Digital Object Identifier (DOI)

  • 10.1002/mabi.201800140


  • eng