Skip to main content

Intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging.

Publication ,  Journal Article
Choi, J; Rakhilin, N; Gadamsetty, P; Joe, DJ; Tabrizian, T; Lipkin, SM; Huffman, DM; Shen, X; Nishimura, N
Published in: Sci Rep
July 20, 2018

Despite the continuous renewal and turnover of the small intestinal epithelium, the intestinal crypt maintains a 'soccer ball-like', alternating pattern of stem and Paneth cells at the base of the crypt. To study the robustness of the alternating pattern, we used intravital two-photon microscopy in mice with fluorescently-labeled Lgr5+ intestinal stem cells and precisely perturbed the mosaic pattern with femtosecond laser ablation. Ablation of one to three cells initiated rapid motion of crypt cells that restored the alternation in the pattern within about two hours with only the rearrangement of pre-existing cells, without any cell division. Crypt cells then performed a coordinated dilation of the crypt lumen, which resulted in peristalsis-like motion that forced damaged cells out of the crypt. Crypt cell motion was reduced with inhibition of the ROCK pathway and attenuated with old age, and both resulted in incomplete pattern recovery. This suggests that in addition to proliferation and self-renewal, motility of stem cells is critical for maintaining homeostasis. Reduction of this newly-identified behavior of stem cells could contribute to disease and age-related changes.

Duke Scholars

Altmetric Attention Stats
Dimensions Citation Stats

Published In

Sci Rep

DOI

EISSN

2045-2322

Publication Date

July 20, 2018

Volume

8

Issue

1

Start / End Page

10989

Location

England

Related Subject Headings

  • Stem Cells
  • Peristalsis
  • Mice
  • Laser Therapy
  • Intravital Microscopy
  • Intestinal Mucosa
  • Homeostasis
  • Cell Movement
  • Animals
  • Aging
 

Citation

APA
Chicago
ICMJE
MLA
NLM
Choi, J., Rakhilin, N., Gadamsetty, P., Joe, D. J., Tabrizian, T., Lipkin, S. M., … Nishimura, N. (2018). Intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging. Sci Rep, 8(1), 10989. https://doi.org/10.1038/s41598-018-29230-y
Choi, Jiahn, Nikolai Rakhilin, Poornima Gadamsetty, Daniel J. Joe, Tahmineh Tabrizian, Steven M. Lipkin, Derek M. Huffman, Xiling Shen, and Nozomi Nishimura. “Intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging.Sci Rep 8, no. 1 (July 20, 2018): 10989. https://doi.org/10.1038/s41598-018-29230-y.
Choi J, Rakhilin N, Gadamsetty P, Joe DJ, Tabrizian T, Lipkin SM, et al. Intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging. Sci Rep. 2018 Jul 20;8(1):10989.
Choi, Jiahn, et al. “Intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging.Sci Rep, vol. 8, no. 1, July 2018, p. 10989. Pubmed, doi:10.1038/s41598-018-29230-y.
Choi J, Rakhilin N, Gadamsetty P, Joe DJ, Tabrizian T, Lipkin SM, Huffman DM, Shen X, Nishimura N. Intestinal crypts recover rapidly from focal damage with coordinated motion of stem cells that is impaired by aging. Sci Rep. 2018 Jul 20;8(1):10989.

Published In

Sci Rep

DOI

EISSN

2045-2322

Publication Date

July 20, 2018

Volume

8

Issue

1

Start / End Page

10989

Location

England

Related Subject Headings

  • Stem Cells
  • Peristalsis
  • Mice
  • Laser Therapy
  • Intravital Microscopy
  • Intestinal Mucosa
  • Homeostasis
  • Cell Movement
  • Animals
  • Aging