A granular activated carbon/electrochemical hybrid system for onsite treatment and reuse of blackwater.

Journal Article (Journal Article)

Over 1/3 of the global population lacks access to improved sanitation, leading to disease, death, and impaired economic development. Our group is working to develop rapidly deployable, cost-effective, and sustainable solutions to this global problem that do not require significant investments in infrastructure. Previously, we demonstrated the feasibility of a toilet system that recycles blackwater for onsite reuse as flush water, in which the blackwater is electrochemically treated to remove pathogens due to fecal contamination. However, this process requires considerable energy (48-93 kJ/L) to achieve complete disinfection of the process liquid, and the disinfected liquid retains color and chemical oxygen demand (COD) in excess of local discharge standards, negatively impacting user acceptability. Granular activated carbon (GAC) efficiently reduces COD in concentrated wastewaters. We hypothesized that reduction of COD with GAC prior to electrochemical treatment would both improve disinfection energy efficiency and user acceptability of the treated liquid. Here we describe the development and testing of a hybrid system that combines these technologies and demonstrate its ability to achieve full disinfection with improved energy efficiency and liquid quality more suitable for onsite reuse and/or discharge.

Full Text

Duke Authors

Cited Authors

  • Rogers, TW; Rogers, TS; Stoner, MH; Sellgren, KL; Lynch, BJ; Forbis-Stokes, AA; Stoner, BR; Hawkins, BT

Published Date

  • November 2018

Published In

Volume / Issue

  • 144 /

Start / End Page

  • 553 - 560

PubMed ID

  • 30077914

Pubmed Central ID

  • PMC6176912

Electronic International Standard Serial Number (EISSN)

  • 1879-2448

International Standard Serial Number (ISSN)

  • 0043-1354

Digital Object Identifier (DOI)

  • 10.1016/j.watres.2018.07.070


  • eng