Asymptotic behavior of the brownian frog model


Journal Article

© 2018, University of Washington. All rights reserved. We introduce an extension of the frog model to Euclidean space and prove properties for the spread of active particles. Fix r>0 and place a particle at each point x of a unit intensity Poisson point process P⊆ℝd−B(0,r). Around each point in P, put a ball of radius r. A particle at the origin performs Brownian motion. When it hits the ball around x for some x ∈ P, new particles begin independent Brownian motions from the centers of the balls in the cluster containing x. Subsequent visits to the cluster do nothing. This waking process continues indefinitely. For r smaller than the critical threshold of continuum percolation, we show that the set of activated points in P approximates a linearly expanding ball. Moreover, in any fixed ball the set of active particles converges to a unit intensity Poisson point process.

Full Text

Duke Authors

Cited Authors

  • Beckman, E; Dinan, E; Durrett, R; Huo, R; Junge, M

Published Date

  • January 1, 2018

Published In

Volume / Issue

  • 23 /

Electronic International Standard Serial Number (EISSN)

  • 1083-6489

Digital Object Identifier (DOI)

  • 10.1214/18-EJP215

Citation Source

  • Scopus