Quantum confined peptide assemblies with tunable visible to near-infrared spectral range.

Journal Article (Journal Article)

Quantum confined materials have been extensively studied for photoluminescent applications. Due to intrinsic limitations of low biocompatibility and challenging modulation, the utilization of conventional inorganic quantum confined photoluminescent materials in bio-imaging and bio-machine interface faces critical restrictions. Here, we present aromatic cyclo-dipeptides that dimerize into quantum dots, which serve as building blocks to further self-assemble into quantum confined supramolecular structures with diverse morphologies and photoluminescence properties. Especially, the emission can be tuned from the visible region to the near-infrared region (420 nm to 820 nm) by modulating the self-assembly process. Moreover, no obvious cytotoxic effect is observed for these nanostructures, and their utilization for in vivo imaging and as phosphors for light-emitting diodes is demonstrated. The data reveal that the morphologies and optical properties of the aromatic cyclo-dipeptide self-assemblies can be tuned, making them potential candidates for supramolecular quantum confined materials providing biocompatible alternatives for broad biomedical and opto-electric applications.

Full Text

Duke Authors

Cited Authors

  • Tao, K; Fan, Z; Sun, L; Makam, P; Tian, Z; Ruegsegger, M; Shaham-Niv, S; Hansford, D; Aizen, R; Pan, Z; Galster, S; Ma, J; Yuan, F; Si, M; Qu, S; Zhang, M; Gazit, E; Li, J

Published Date

  • August 13, 2018

Published In

Volume / Issue

  • 9 / 1

Start / End Page

  • 3217 -

PubMed ID

  • 30104564

Pubmed Central ID

  • 30104564

Electronic International Standard Serial Number (EISSN)

  • 2041-1723

International Standard Serial Number (ISSN)

  • 2041-1723

Digital Object Identifier (DOI)

  • 10.1038/s41467-018-05568-9


  • eng