Incorporation of Cellulose Nanocrystals (CNCs) into the Polyamide Layer of Thin-Film Composite (TFC) Nanofiltration Membranes for Enhanced Separation Performance and Antifouling Properties.
Journal Article (Journal Article)
To achieve greater separation performance and antifouling properties in a thin-film composite (TFC) nanofiltration membrane, cellulose nanocrystals (CNCs) were incorporated into the polyamide layer of a TFC membrane for the first time. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the successful formation of the CNC-polyamide composite layer. Surface characterization results revealed differences in the morphologies of the CNC-TFC membranes compared with a control membrane (CNC-TFC-0). Streaming potential measurements and molecular weight cutoff (MWCO) characterizations showed that the CNC-TFC membranes exhibited a greater negative surface charge and a smaller MWCO as the CNC content increased. The CNC-TFC membranes showed enhanced hydrophilicity and increased permeability. With the incorporation of only 0.020 wt % CNCs, the permeability of the CNC-TFC membrane increased by 60.0% over that of the polyamide TFC without CNC. Rejection of Na2 SO4 and MgSO4 by the CNC-TFC membranes was similar to that observed for the CNC-TFC-0 membrane, at values of approximately 98.7% and 98.8%, respectively, indicating that divalent salt rejection was not sacrificed. The monovalent ion rejection tended to increase as the CNC content increased. In addition, the CNC-TFC membranes exhibited enhanced antifouling properties due to their increased hydrophilicity and more negatively charged surfaces.
Full Text
Duke Authors
Cited Authors
- Bai, L; Liu, Y; Bossa, N; Ding, A; Ren, N; Li, G; Liang, H; Wiesner, MR
Published Date
- October 2018
Published In
Volume / Issue
- 52 / 19
Start / End Page
- 11178 - 11187
PubMed ID
- 30175584
Electronic International Standard Serial Number (EISSN)
- 1520-5851
International Standard Serial Number (ISSN)
- 0013-936X
Digital Object Identifier (DOI)
- 10.1021/acs.est.8b04102
Language
- eng