Mycobacterial Mutagenesis and Drug Resistance Are Controlled by Phosphorylation- and Cardiolipin-Mediated Inhibition of the RecA Coprotease.

Published

Journal Article

Infection with Mycobacterium tuberculosis continues to cause substantial human mortality, in part because of the emergence of antimicrobial resistance. Antimicrobial resistance in tuberculosis is solely the result of chromosomal mutations that modify drug activators or targets, yet the mechanisms controlling the mycobacterial DNA-damage response (DDR) remain incompletely defined. Here, we identify RecA serine 207 as a multifunctional signaling hub that controls the DDR in mycobacteria. RecA S207 is phosphorylated after DNA damage, which suppresses the emergence of antibiotic resistance by selectively inhibiting the LexA coprotease function of RecA without affecting its ATPase or strand exchange functions. Additionally, RecA associates with the cytoplasmic membrane during the mycobacterial DDR, where cardiolipin can specifically inhibit the LexA coprotease function of unmodified, but not S207 phosphorylated, RecA. These findings reveal that RecA S207 controls mutagenesis and antibiotic resistance in mycobacteria through phosphorylation and cardiolipin-mediated inhibition of RecA coprotease function.

Full Text

Duke Authors

Cited Authors

  • Wipperman, MF; Heaton, BE; Nautiyal, A; Adefisayo, O; Evans, H; Gupta, R; van Ditmarsch, D; Soni, R; Hendrickson, R; Johnson, J; Krogan, N; Glickman, MS

Published Date

  • October 4, 2018

Published In

Volume / Issue

  • 72 / 1

Start / End Page

  • 152 - 161.e7

PubMed ID

  • 30174294

Pubmed Central ID

  • 30174294

Electronic International Standard Serial Number (EISSN)

  • 1097-4164

Digital Object Identifier (DOI)

  • 10.1016/j.molcel.2018.07.037

Language

  • eng

Conference Location

  • United States