Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology.

Published

Journal Article

Materials and structures that enable long-term, intimate coupling of flexible electronic devices to biological systems are critically important to the development of advanced biomedical implants for biological research and for clinical medicine. By comparison with simple interfaces based on arrays of passive electrodes, the active electronics in such systems provide powerful and sometimes essential levels of functionality; they also demand long-lived, perfect biofluid barriers to prevent corrosive degradation of the active materials and electrical damage to the adjacent tissues. Recent reports describe strategies that enable relevant capabilities in flexible electronic systems, but only for capacitively coupled interfaces. Here, we introduce schemes that exploit patterns of highly doped silicon nanomembranes chemically bonded to thin, thermally grown layers of SiO2 as leakage-free, chronically stable, conductively coupled interfaces. The results can naturally support high-performance, flexible silicon electronic systems capable of amplified sensing and active matrix multiplexing in biopotential recording and in stimulation via Faradaic charge injection. Systematic in vitro studies highlight key considerations in the materials science and the electrical designs for high-fidelity, chronic operation. The results provide a versatile route to biointegrated forms of flexible electronics that can incorporate the most advanced silicon device technologies with broad applications in electrical interfaces to the brain and to other organ systems.

Full Text

Duke Authors

Cited Authors

  • Li, J; Song, E; Chiang, C-H; Yu, KJ; Koo, J; Du, H; Zhong, Y; Hill, M; Wang, C; Zhang, J; Chen, Y; Tian, L; Zhong, Y; Fang, G; Viventi, J; Rogers, JA

Published Date

  • October 2018

Published In

Volume / Issue

  • 115 / 41

Start / End Page

  • E9542 - E9549

PubMed ID

  • 30228119

Pubmed Central ID

  • 30228119

Electronic International Standard Serial Number (EISSN)

  • 1091-6490

International Standard Serial Number (ISSN)

  • 0027-8424

Digital Object Identifier (DOI)

  • 10.1073/pnas.1813187115

Language

  • eng