Tissue self-organization underlies morphogenesis of the notochord.

Published online

Journal Article

The notochord is a conserved axial structure that in vertebrates serves as a hydrostatic scaffold for embryonic axis elongation and, later on, for proper spine assembly. It consists of a core of large fluid-filled vacuolated cells surrounded by an epithelial sheath that is encased in extracellular matrix. During morphogenesis, the vacuolated cells inflate their vacuole and arrange in a stereotypical staircase pattern. We investigated the origin of this pattern and found that it can be achieved purely by simple physical principles. We are able to model the arrangement of vacuolated cells within the zebrafish notochord using a physical model composed of silicone tubes and water-absorbing polymer beads. The biological structure and the physical model can be accurately described by the theory developed for the packing of spheres and foams in cylinders. Our experiments with physical models and numerical simulations generated several predictions on key features of notochord organization that we documented and tested experimentally in zebrafish. Altogether, our data reveal that the organization of the vertebrate notochord is governed by the density of the osmotically swelling vacuolated cells and the aspect ratio of the notochord rod. We therefore conclude that self-organization underlies morphogenesis of the vertebrate notochord.This article is part of the Theo Murphy meeting issue on 'Mechanics of development'.

Full Text

Duke Authors

Cited Authors

  • Norman, J; Sorrell, EL; Hu, Y; Siripurapu, V; Garcia, J; Bagwell, J; Charbonneau, P; Lubkin, SR; Bagnat, M

Published Date

  • September 24, 2018

Published In

Volume / Issue

  • 373 / 1759

PubMed ID

  • 30249771

Pubmed Central ID

  • 30249771

Electronic International Standard Serial Number (EISSN)

  • 1471-2970

Digital Object Identifier (DOI)

  • 10.1098/rstb.2017.0320

Language

  • eng

Conference Location

  • England