Band Gap Tailoring and Structure-Composition Relationship within the Alloyed Semiconductor Cu 2 BaGe 1- x Sn x Se 4


Journal Article

Copyright © 2018 American Chemical Society. Recently, the I 2 -II-IV-VI 4 (I = Cu, Ag; II = Ba, Sr; IV = Ge, Sn; VI = S, Se) materials family was identified as a promising source of potential new photovoltaic (PV) and photoelectrochemical (PEC) absorbers. These materials avoid the pitfalls of the successful photovoltaic semiconductors Cu(In,Ga)(S,Se) 2 and CdTe, as they do not contain scarce (In, Te) or toxic (Cd) elements. Furthermore, ionic sizes and coordination preferences are very different for the I, II, and IV cations in the I 2 -II-IV-VI 4 family, providing an intriguing avenue to avoid intrinsic antisite disordering that limits efficiency improvement in Cu 2 ZnSn(S,Se) 4 (where Cu and Zn can easily substitute for one another). Here, we experimentally and computationally explore alloys Cu 2 BaGe 1-x Sn x Se 4 (CBGTSe, 0 ≤ x ≤ 1) to fine-tune the structural, optical, and electronic properties for the relatively large band gap (E g = 1.91(5) eV) unalloyed compound Cu 2 BaGeSe 4 (CBGSe). We show that CBGTSe maintains the P3 1 crystal structure type of the parent CBGSe up to x ≤ 0.70. A minimum band gap value of 1.57(5) eV can be reached at x = 0.70 before the structure transforms to the Ama2 structure type. The experimental and theoretical investigations demonstrate the potential of CBGTSe for thin-film PV and PEC absorbers.

Full Text

Duke Authors

Cited Authors

  • Wessler, GC; Zhu, T; Sun, JP; Harrell, A; Huhn, WP; Blum, V; Mitzi, DB

Published Date

  • September 25, 2018

Published In

Volume / Issue

  • 30 / 18

Start / End Page

  • 6566 - 6574

Electronic International Standard Serial Number (EISSN)

  • 1520-5002

International Standard Serial Number (ISSN)

  • 0897-4756

Digital Object Identifier (DOI)

  • 10.1021/acs.chemmater.8b03380

Citation Source

  • Scopus